
D E C E N T R A L I Z E D C O M P U TAT I O N O F Q U A L I TAT I V E S PAT I A L
R E L AT I O N S H I P S I N M O B I L E G E O S E N S O R N E T W O R K S

alan james both

0000-0003-4021-9632

Submitted in total fulfillment of the requirements of
the degree of Doctor of Philosophy

September 2015

Department of Infrastructure Engineering

The University of Melbourne

Produced on archival quality paper

Alan James Both: Decentralized computation of qualitative spatial relation-
ships in mobile geosensor networks, © September 2015

A B S T R A C T

Consider the task of monitoring changes in the structure of dynamic
spatial phenomena such as algal blooms or oil spills. Such phenom-
ena consist of multiple disconnected region components, which can
reconfigure over time. This work uses qualitative spatial reasoning to
record only salient changes to the internal structure of these regions.

To detect and store such qualitative spatial information, this re-
search proposes a collection of five in-network, decentralized algo-
rithms. Unlike previous work, these algorithms are able to operate in
networks of mobile geosensor nodes with no access to coordinate in-
formation. A decentralized approach to algorithm design allows for
information processing to take place within the network, with the
defining feature being that no single node has access to the entirety
of data in the network.

A fundamental aspect of decentralized algorithms is wireless com-
munication between nodes. As such communication has high power
requirements, the algorithms presented in this work are designed
to minimize the amount of communication taking place, while still
maintaining accuracy. Experimental evaluation of these algorithms
found that meeting the criteria of sufficient node density, broadcast in-
terval, and communication distance produced accurate results. These
three factors were found to be dependent upon the characteristics of
the phenomena being monitored.

It was also found that the modules comprising each of the decen-
tralized algorithms exhibited either sub-polynomial, linear, or weakly
polynomial scalability (with the worst case being O(n1.1)). The or-
der of scalability produced by a module was found to be due to
the type of decentralized algorithm that module was based on, with
leader election based algorithms producing weakly polynomial scal-
ability, and surprise flooding based algorithms producing linear or
sub-polynomial scalability.

This work aims to provide long-term environmental monitoring to
areas that have previously been unable to be monitored due to their
location, the cost of deploying a suitable geosensor network, or the
time-span required.

iii

D E C L A R AT I O N

The following declaration page, signed by the candidate:

This is to certify that:

1. the thesis comprises only my original work towards the PhD
except where indicated in the Preface,

2. due acknowledgement has been made in the text to all other
material used,

3. the thesis is fewer than 100 000 words in length, exclusive of
tables, maps, bibliographies, and appendices.

Melbourne, September 2015

Alan James Both

P R E FA C E

This thesis is supported by funding from the Australian Research
Council (ARC) under the Discovery Projects Scheme, grant number
DP120103758. Additionally, this thesis is based on published works
from my PhD research during candidature. As such, some ideas, fig-
ures, and algorithms have appeared previously in the following pub-
lications:

[1] A. Both and M. Duckham, “Qualitative Spatial Structure in Com-
plex Areal Objects Using Location-Free, Mobile Geosensor Net-
works,” in 2013 IEEE 13th International Conference on Data Mining
Workshops (ICDMW), Dec. 2013, pp. 978–985.

[2] A. Both, W. Kuhn, and M. Duckham, “Spatiotemporal Braitenberg
Vehicles,” in Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser.
SIGSPATIAL’13. New York, NY, USA: ACM, Nov. 2013, pp.
74–83. [Online]. Available: http://doi.acm.org/10.1145/2525314.
2525344

[3] A. Both, M. Duckham, P. Laube, T. Wark, and J. Yeoman,
“Decentralized Monitoring of Moving Objects in a Transportation
Network Augmented with Checkpoints,” The Computer Journal,
vol. 56, no. 12, pp. 1432–1449, Dec. 2013. [Online]. Available:
http://comjnl.oxfordjournals.org/content/56/12/1432

other publications

[4] A. Galton, M. Duckham, and A. Both, “Extracting Causal Rules
from Spatio-temporal Data,” in Spatial Information Theory: 12th In-
ternational Conference, COSIT, Santa Fe, NM, USA, Oct. 2015.

[5] S. Li, Z. Long, W. Liu, M. Duckham, and A. Both, “On redundant
topological constraints,” Artificial Intelligence, vol. 225, pp. 51–76,
Aug. 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0004370215000569

[6] M. Duckham, A. Galton, and A. Both, “Identifying perpet-
uation in processes driving fish movement,” in In 23rd GIS
Research UK (GISRUK) conference, Leeds, UK, Apr. 2015. [On-
line]. Available: http://leeds.gisruk.org/abstracts/GISRUK2015_
submission_87.pdf

vii

http://doi.acm.org/10.1145/2525314.2525344
http://doi.acm.org/10.1145/2525314.2525344
http://comjnl.oxfordjournals.org/content/56/12/1432
http://www.sciencedirect.com/science/article/pii/S0004370215000569
http://www.sciencedirect.com/science/article/pii/S0004370215000569
http://leeds.gisruk.org/abstracts/GISRUK2015_submission_87.pdf
http://leeds.gisruk.org/abstracts/GISRUK2015_submission_87.pdf

A C K N O W L E D G M E N T S

I would first like to express my deepest gratitude to my supervisor,
Prof. Matt Duckham. His continued support, guidance and enthusi-
asm provided me with abundant motivation and inspiration. Words
cannot adequately express what a privilege it has been to work with
him.

I would also like to thank my thesis advisory committee; Assoc.
Prof. Allison Kealy and Prof. Stephan Winter. Their kind words and
unique insights encouraged me consider my work from all angles,
and my work has improved considerably for it.

To my colleagues in the Ambient Spatial Intelligence (AmSi) group;
Dr. Susanne Bleisch, Dr. Lin-Jie Guan, Dr. Myeonghun Jeong, Mel-
lissa Shahrom, Jeremy Yeoman, Azadeh Mousavi, Lisa Cheong, and
Farzad Almadara; you have my sincere thanks. I’ve greatly enjoyed
our time spent together, and our discussions have broadened my
knowledge in so many ways. Having the opportunity to present my
work to such kind people has made presenting at conferences a much
easier task. In particular, I would like to thank Prof. Susanne Bleisch.
Our discussions on data visualization have sparked a keen interest
in me. Her shrewd advice has greatly improved both my knowledge
and skills in this area.

To my teaching colleagues at the University of Melbourne; Dr. Gra-
ham Brodie, Victoria Petrevski, and Isabel Pacheco; teaching with
you has been a wonderful and supremely rewarding experience. I’ve
never felt more exhausted and energized than in the classroom. You
have instilled a love of teaching in me that I won’t soon forget.

To my friends, thank you for your patience and support. Without
your continued efforts to socialize with me, I would now most likely
be a hermit.

Lastly, I would like to thank my parents Eddie and Linda, and my
sister Amanda. Their love and support has always been a great joy to
me.

ix

C O N T E N T S

1 introduction 1

1.1 Background and problem statement 1

1.2 Hypothesis and scope 3

1.3 Significance of study 4

1.4 Structure of thesis 4

2 literature review 7

2.1 Qualitative representation of regions 7

2.1.1 Simplification of sensor data 7

2.1.2 Topological relations between regions 8

2.1.3 Topological change 10

2.2 Maptree 12

2.2.1 Maptree storage 14

2.2.2 Maptree dynamism 18

2.3 Decentralized algorithms 18

2.3.1 Decentralized monitoring of regions 18

2.3.2 Group movement patterns 19

2.3.3 Location-free, mobile node based approaches 20

2.4 Summary 21

3 methodology 23

3.1 Algorithm design 23

3.1.1 Static geosensor network 23

3.1.2 Algorithm specification 24

3.1.3 Dynamic geosensor network 27

3.2 Algorithm simulation 29

3.2.1 NetLogo simulation environment 30

3.2.2 BehaviorSpace 32

3.3 Algorithm evaluation 33

3.3.1 Scalability 33

3.3.2 Veracity 36

3.4 Summary 37

4 static regions 39

4.1 Basic data structure 39

4.1.1 Qualitative relations 40

4.1.2 Algorithm design 42

4.1.3 Module 1: Region identification 43

4.1.4 Module 2: Voronoi region generation 44

4.1.5 Module 3: Adjacency relation identification 46

4.1.6 Module 4: Containment tree generation 47

4.1.7 Module 5: Node movement 49

4.1.8 Algorithm summary 51

4.2 Simplified maptree for simple regions 51

4.2.1 Simplified maptree table 53

xi

4.2.2 Qualitative relations 54

4.2.3 Algorithm design 55

4.2.4 Module 3a: Modified adjacency relation identi-
fication 57

4.2.5 Module 4a: Simplified maptree generation 59

4.2.6 Module 5a: Modified node movement 60

4.3 Simplified maptree for complex regions 61

4.3.1 Qualitative relations 61

4.3.2 Algorithm design 63

4.3.3 Module 3b: Modified adjacency relation identi-
fication for complex regions 63

4.3.4 Module 4b: Simplified maptree generation for
complex regions 64

4.3.5 Module 5b: Modified node movement for com-
plex regions 66

4.4 Summary 67

5 dynamic regions 69

5.1 Simple regions 69

5.1.1 Dynamic data structure 70

5.1.2 Qualitative relations 71

5.1.3 Algorithm design 73

5.1.4 Module 3c: Adjacency relation identification for
dynamic regions 74

5.1.5 Module 4c: Simplified maptree generation for
dynamic regions 75

5.1.6 Module 5c: Node movement for dynamic re-
gions 79

5.2 Complex regions 82

5.2.1 Qualitative relations 85

5.2.2 Algorithm design 87

5.2.3 Module 3d: Adjacency relation identification for
complex dynamic regions 87

5.2.4 Module 4d: Simplified maptree generation for
complex dynamic regions 89

5.3 Summary 92

6 evaluation 95

6.1 Veracity 97

6.1.1 Veracity of module 1 97

6.1.2 Veracity of module 2 99

6.2 Scalability of static regions 101

6.2.1 Simple region configuration 102

6.2.2 Complex region configuration 110

6.3 Scalability of dynamic regions 114

6.3.1 Simple region configuration 116

6.3.2 Complex region configuration 120

6.4 Summary 124

xii

7 conclusions 129

7.1 Results and major findings 129

7.2 Limitations and future works 131

7.3 Final thoughts 135

a appendix 137

xiii

L I S T O F F I G U R E S

1 Randomly generated continuous field split into
regions with values greater than 50. 8

2 Eight distinct topological relations between black
striped region x and shaded grey region y. RCC8

and 4IM/9IM labels are provided. Arrows in-
dicate valid topological transitions between re-
lations. 9

3 Conceptual neighborhood of RCC8 relations,
adapted from [7]. 11

4 Types of topological events possible for dynamic
regions where the event is instigated at a single
point. 12

5 Example region. Black lines represent bound-
aries between region components. 13

6 Maptree of the region configuration of Figure
5. 15

7 Example geosensor network. Nodes that have
sensed the grey region are colored black, while
nodes that have not are white. One-hop wire-
less communication links between nodes are
represented as black lines, with a maximum
distance of c. 24

8 Example dynamic geosensor network at three
sequential timesteps with mobile grey region. 27

9 NetLogo code for algorithm 3. 30

10 Screenshot of the Netlogo simulation environ-
ment running algorithm 3 showing the world
simulator (center), simulation controls (left and
top), and simulation output (bottom and right). 31

11 Graph plotting the relationship between net-
work size and number of messages sent by the
network with fitted curve. 32

12 Typical response curves for communication com-
plexity, after [8]. 34

13 Scalability of communication in terms of total
number of messages sent with change in num-
bers of fish for Algorithms 1—3, adapted from
[9]. 34

xiv

14 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node during a run of Algorithms 1—3,
adapted from [9]. 35

15 Average number of region objects known to ve-
hicles over simulation time, for total 200 vehi-
cles (100 “fear” type-2a and 100 “aggression”
type-2b). The actual number of region objects
embedded in the environment is 2 for these ex-
periments, adapted from [10]. 36

16 Example complex areal objects with identical
containment trees. Positive region components
are grey and negative region components are
white. Black lines and thick blue lines repre-
sent the Voronoi boundaries induced by the
positive and negative region components re-
spectively. 40

17 Combined containment tree and Voronoi-adjacency
relations of regions from Figure 16. Contain-
ment edges are black and Voronoi-adjacency
edges are blue and dashed. 41

18 Example diagram showing the topological re-
lations between black striped inner and shaded
grey outer regions discussed in [11]. 42

19 Flow diagram representing the interactions be-
tween the modules that comprise the basicStatic
algorithm. 43

20 Example showing how without a check that
the received message’s parent value is not equal
to the node’s region component id, Module
4 can cause nodes to select the incorrect par-
ent. 48

21 Maptrees: a. Standard maptree, derived from
DCEL; b. Partially simplified maptree (with pre-
served boundary cycle); and c. Simplified map-
tree. 52

22 Simple region example with all edges labeled.
Region components are grey and black lines
represent the Voronoi boundaries of those re-
gion components. Black dots represent the Voronoi
junctions. 52

23 Flow diagram representing the interactions be-
tween the modules that comprise the simpleStatic
algorithm. 56

xv

24 Adjacency example where no node is on the
boundary between the three Voronoi region com-
ponents. Nodes capable of detecting the junc-
tion {1, 2, 3} by communicating with their neigh-
bors are shaded black. 58

25 Complex regions example. Positive region com-
ponents are grey and negative region compo-
nents are white. Black lines represent the Voronoi
boundaries induced by positive region compo-
nents and blue, thick lines represent the Voronoi
boundaries induced by negative region com-
ponents. 61

26 Simplified maptree example based on complex
region from Figure 25. Simplified maptree in-
duced by the positive region components (M+)
on left and simplified maptree induced by the
negative region components (M−) on right. The
simplified maptree table can be found in table
16 of the appendix. 62

27 Dynamic region example with accompanying
simplified maptree showing three time steps
for a simple region. 70

28 Conceptual neighborhood graph for simple re-
gions showing the four possible methods re-
gion components can configure into or out of
an engulfs or surrounds relation. 72

29 Flow diagram representing the interactions be-
tween the modules that comprise the simple-
Dynamic algorithm. 74

30 Dynamic region example with accompanying
simplified maptree showing three time steps
for a simple region. Positive region components
are grey and negative region components are
white. Black lines represent the Voronoi bound-
aries induced by positive region components
and blue lines represent the Voronoi bound-
aries induced by negative region components. 83

31 Conceptual neighborhood graph for complex
regions showing the methods by which region
components can configure into or out of an
contains, engulfs or surrounds relation. 86

xvi

32 Flow diagram representing the interactions be-
tween the modules that comprise the five algo-
rithms. Modules shaded blue comprise algo-
rithms designed for static regions and modules
shaded green comprise algorithms designed for
dynamic regions. 96

33 Expected and observed regions as well as Voronoi
boundaries for the complex areal object origi-
nally displayed in Figure 25. Black and white
lines represent the Voronoi boundaries induced
by positive and negative region components
respectively. Displays an example implemen-
tation of modules 1 and 2 on a network with
10,000 nodes. 98

34 Veracity of module 1 for varying network sizes
and communication distances, adapted from
[12]. 99

35 Veracity of module 2 for varying network sizes
and communication distances. 100

36 Scalability of communication in terms of the
total number of messages sent with constant
communication distance for the basicStatic al-
gorithm. 103

37 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance for the basic-
Static algorithm. 104

38 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance and message ag-
gregation for the basicStatic algorithm. 105

39 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the basicStatic algorithm. 106

40 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance and message ag-
gregation for the simpleStatic algorithm. 107

41 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the simpleStatic algorithm. 108

42 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance and message ag-
gregation for the complexStatic algorithm. 108

xvii

43 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the complexStatic algorithm. 109

44 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance and message ag-
gregation for the basicStatic algorithm. 110

45 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the basicStatic algorithm. 112

46 Scalability of communication in terms of the
total number of messages sent with propor-
tional communication distance and message ag-
gregation for complexStatic algorithm. 113

47 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the complexStatic algorithm. 114

48 Scalability of communication in terms of the
total number of messages sent for the simple-
Dynamic algorithm. 117

49 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the simpleDynamic algorithm. 118

50 Scalability of communication in terms of the
total number of messages sent for the complex-
Dynamic algorithm. 120

51 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the complexDynamic algo-
rithm. 120

52 Scalability of communication in terms of the
total number of messages sent for the complex-
Dynamic algorithm. 122

53 Scalability of communication in terms of worst
case (maximum) load (number of messages sent)
for any node for the complexDynamic algo-
rithm. 123

54 Dynamic region example showing the simulta-
neous merging of three region components. 135

55 Simple dynamic region used in the evaluation
of algorithms from chapter 5. Region dimen-
sions are 40×32 and t indicates the time the re-
gion enters the shown configuration. 140

xviii

56 Complex dynamic region used in the evalua-
tion of algorithms from chapter 5. Region di-
mensions are 40×32 and t indicates the time the
region enters the shown configuration. 142

L I S T O F TA B L E S

1 DCEL table augmented with connected com-
ponent labeling. Table shows entries for Figure
5. 16

2 DCEL table augmented with connected com-
ponent labeling. Table shows some entries for
Figure 22. The completed table can be found in
the appendices as Table 14. 53

3 Simplified maptree table based on Table 2. The
completed table can be found in the appen-
dices as Table 15. 54

4 Table of results of label function for connected
components of Figure 25. 63

5 Simplified maptree table (Mt) augmented with
start and end times based on Figure 27. 71

6 Change table (Ct) for logging split and merge
events based on Figure 27. 71

7 Dynamic simplified maptree table illustrating
duplicated records. 78

8 Simplified maptree table based on Figure 30. 82

9 Change table (Ct) for logging split and merge
events based on Figure 30. 84

10 Label table (Lt) for logging mappings between
conected components and the region compo-
nents that contain them based on Figure 30. 84

11 Label table of Figure 30 when t = 20. 90

12 Scalability of static algorithms in terms of the
total number of messages sent by each module.
Regression curve for module 2 shows the num-
ber of messages sent per broadcast round. 125

13 Scalability of dynamic algorithms in terms of
the total number of messages sent by each mod-
ule. 126

14 DCEL table augmented with connected com-
ponent labeling. Complete version of Table 2. 138

15 Simplified maptree table based on Table 14. 139

16 Simplified maptree table based on Figure 25. 139

xix

17 Simplified dynamic maptree table based on Fig-
ure 55 where split detected at 200, unenclose
transition at 500, disappearance at 800, appear-
ance at 900, enclose transition at 1300, and merge
detected at 1500. 141

18 Change table based on Figure 55 where split
detected at 200, unenclose transition at 500, en-
close transition at 1300, and merge detected at
1500. 141

19 Simplified dynamic maptree table based on Fig-
ure 56 where split detected at 200, unenclose
transition at 500, disappearance at 800, appear-
ance at 900, enclose transition at 1300, and merge
detected at 1500. 143

20 Change table based on Figure 56 where split
detected at 200, unenclose transition at 500, en-
close transition at 1300, and merge detected at
1500. 143

21 Label table based on Figure 56 where split de-
tected at 200, unenclose transition at 500, en-
close transition at 1300, and merge detected at
1500. 144

L I S T O F A L G O R I T H M S

1 Maptree generation algorithm 17

2 Surprise flooding algorithm 26

3 Surprise flooding algorithm for dynamic net-
works 28

1 Region identification 44

2 Voronoi region generation 45

3 Adjacency graph propagation 46

4 Containment tree generation 49

5 Node movement 50

3a Modified adjacency graph propagation 59

4a Simplified maptree generation 60

5a Modified node movement 61

3b Modified adjacency graph propagation for com-
plex regions 64

4b Simplified maptree generation for complex re-
gions 65

xx

5b Modified node movement 66

3c Dynamic adjacency graph propagation 75

4c Dynamic simplified maptree generation 77

4c Dynamic simplified maptree generation (con-
tinued) 78

5c Dynamic node movement 80

5c Dynamic node movement (continued) 81

3d Dynamic adjacency graph propagation for com-
plex regions 88

4d Dynamic simplified maptree generation for com-
plex regions 91

4d Dynamic simplified maptree generation for com-
plex regions (continued) 92

xxi

1
I N T R O D U C T I O N

The range of use cases of geosensor networks has expanded widely in
recent years, particularly with the advent of decentralized algorithms,
which allow the processing and analysis of environmental data to
take place within the network. Presently, many of the decentralized
algorithms at the forefront of the field have requirements that severely
limit their usefulness. Two restrictions that pervade the majority of
these algorithms are as follows:

1. The nodes comprising the network must know their precise co-
ordinates, and,

2. The nodes must remain static throughout the algorithm’s oper-
ation.

This thesis focuses on eliminating these restrictions, by developing
efficient decentralized algorithms for monitoring the qualitative spa-
tial structure of regions using location-free geosensor networks with
nodes that are mobile.

1.1 background and problem statement

To illustrate the need for decentralized algorithms that make use of
node mobility and operate without the coordinates of the nodes, the
motivating example of monitoring the internal structure of regions
will be used.

Monitoring areas of interest is the primary application of geosensor
networks. Depending on the specific use, areas of interest can include
regions of high temperature, flooding, chemical or biological contam-
inants. Each node in the geosensor network is outfitted with a sensor
or combination of sensors capable of detecting these areas of interest.
This is typically done by setting a threshold; for example, a region of
high temperature could be defined by the nodes as anything above
30 degrees. The task of monitoring these regions can then be simpli-
fied by treating them as single homogeneous areas that require both
the boundaries and interiors of the regions to be contiguous (i.e., no
disconnected regions or holes).

This simplicity however does not take into account the inherently
complex internal structure of many phenomena worth monitoring,
both natural and artificial in origin. For example: algal blooms, re-
gions of abnormal temperature, oil spills, and bushfires can all con-
tain disconnected parts, holes and islands. Regions such as these,

1

with their topologically complex interiors, are referred to as com-
plex areal objects. Additionally, geosensor networks are expected to
monitor regions over time. For simple regions, this involves tracking
changes in location and shape of the region. For complex areal objects,
changes to the internal structure must also be monitored.

While the monitoring of areas could be carried out using quanti-
tative spatial representations such as raster grids, this project will in-
stead focus on a more abstract, symbolic representation. Specifically,
the work will rely on qualitative spatial reasoning (QSR), which al-
lows the structure of regions to be modeled algebraically as a series
of relations [13].

As the size of a geosensor network deployment increases, so too
does the frequency of node failure. Because of this, algorithms must
be designed to take into account the addition and removal of nodes
throughout their operation. In addition to dynamic regions, the nodes
themselves may be mobile. For example, when monitoring algal blooms,
nodes may be stationed on untethered buoys, which can move due
to ocean currents and wind effects [14]. In fact, such types of effects
may even be used for network distribution.

The algorithms used to carry out these tasks are decentralized in
nature. The key difference between decentralized and centralized ap-
proaches on geosensor networks lies in where the data obtained from
the sensors is processed and stored. A centralized approach requires
that all sensor data be transferred to and aggregated at a central loca-
tion before processing can take place. A decentralized approach how-
ever allows for processing to take place within the network, with the
essential feature being that no single node has access to the entirety
of data in the network.

The decentralized approach requires that each node within the net-
work has a CPU for processing data, a wireless radio for commu-
nicating data, and sensors for generating data. Given that nodes on
geosensor networks have limited battery life, choices must be made
in order to prolong the operating lifespan of a network. This is done
by carefully selecting the type and amount of sensors used in each
node as well as the type of algorithms used.

One class of sensors with high power requirements are location sen-
sors. These are typically a type of radio that receives information from
transmitters with known locations in order to compute the node’s co-
ordinates. The most widely used example of this would be Global
Navigation Satellite Systems (GNSS) such as GPS. Because of this,
algorithms will be designed for nodes that are not equipped with lo-
cation sensors. That is not to say that the nodes will be location-free
in that they will not make use of location information, just that they
will not have access to their absolute coordinates. Nodes will still be
able to make use of relative location by being given a uniform com-
munication range.

2

A uniform communication range means that for any given node
there is a set of neighboring nodes within this range that the node
can communicate with directly, and a set of nodes which are further
away that require messages to be passed through intermediary nodes.
In fact, the number of nodes a message has passed through can be
used as a metric for the relative distance that message has traveled.

Additionally, nodes will be equipped with a single threshold-based
sensor capable of detecting only the presence or absence of the region.
This will further reduce the power requirements of the nodes as well
as the complexity of the algorithms. Wireless communication also
requires large amounts of power but is a fundamental requirement
for decentralized algorithms. With this in mind, algorithms must be
designed in such a way as to minimize the amount of communication
taking place.

1.2 hypothesis and scope

It is the focus of this thesis that qualitative spatial information is ex-
tracted from regions that are monitored by dynamic geosensor net-
works. Given these specifications and constraints, this research will
address the following hypothesis:

HYPOTHESIS That decentralized algorithms can be designed to
detect and monitor a variety of complex spatial phenomena running
on geosensor networks that:

1. Operate without coordinate information,

2. Are tolerant of geosensor node mobility,

3. Accurately detect the qualitative structure of the underlying re-
gion,

4. Correctly detect salient changes to the qualitative structure of
dynamic regions, and

5. Are efficient in the amount of communication needed to per-
form their task.

In order to test this hypothesis, the following methodology will be
used: Firstly, a formal model must be selected for both the decentral-
ized algorithms and the geosensor network they run on. Next, these
decentralized algorithms will be implemented in an agent-based sim-
ulation system before being evaluated based on the criteria of scala-
bility and veracity.

To define the scope of this study, this research proposes four classes
of decentralized algorithms based on whether the region being moni-
tored is static or dynamic and whether the region’s structure is simple
(i.e., the region contains a single hole) or complex (i.e., the region may
contain multiple holes).

3

1.3 significance of study

As mentioned in the previous section, the primary outcome of this
thesis is the specification and evaluation of decentralized algorithms
that describe the qualitative structure of regions using location-free
geosensor networks where the nodes are mobile. The key results of
this research are:

• A collection of decentralized algorithms that efficiently record
the internal structure of a monitored static or dynamic region
with a simple or complex internal structure.

• A formal structure capable of efficiently storing the qualitative
internal structure of, and changes to these regions.

• A set of qualitative spatial relations to distinguish when a re-
gion component is completely or partially enclosed by another
region component, or partially enclosed by multiple region com-
ponents.

• A conceptual neighborhood graph for dynamic regions to de-
scribe the specific way region configurations enter and exit the
described qualitative spatial relations in order to provide a de-
tailed description of how the relations between region compo-
nents change over time.

This research aims to contribute to the field of environmental moni-
toring by bringing long-term monitoring to areas previously unsuited
to geosensor networks and at a reduced cost. These nodes would re-
quire only a single sensor to detect the presence or absence of the
monitored phenomena and a wireless transceiver to communicate
with their neighbors. This, in addition to not including a GNSS ra-
dio, would reduce both the cost and the power requirements of the
network.

1.4 structure of thesis

The remainder of this thesis is structured as follows: Chapter 2 be-
gins with an overview of qualitative spatial reasoning with respect to
regions, specifically covering topological relations between and topo-
logical changes to regions. A detailed examination of the maptree, a
formal structure capable of efficiently storing the qualitative internal
structure of regions, is then discussed. Finally, a selection of decentral-
ized algorithms are presented and categorized based on the specific
aspect of the hypothesis they are capable of addressing. The chap-
ter then concludes by identifying the gap in current knowledge this
research aims to fill.

4

Chapter 3 describes the research framework used in this work;
namely the formal specification of the geosensor network in addition
to the specification, implementation, and evaluation of decentralized
algorithms. Chapter 4 presents three decentralized algorithms that
are capable of determining the internal structure of static regions and
discovering any qualitative relations that may be present. Chapter 5

extends these algorithms, with two decentralized algorithms that are
capable of additionally functioning on dynamic regions.

Chapter 6 presents experimental evaluations of the algorithms pre-
sented in Chapters 4 and 5, with their performance evaluated in
terms of veracity and scalability. Lastly, Chapter 7 presents conclu-
sions based on the results obtained from Chapter 6.

5

2
L I T E R AT U R E R E V I E W

The purpose of this literature review is to illustrate the components
needed to construct algorithms capable of testing the hypothesis. The
review begins with an overview of qualitative spatial reasoning with
respect to regions, specifically covering topological relations between
and topological changes to regions. A detailed examination of the
maptree, a formal structure capable of efficiently storing the qualita-
tive internal structure of regions, is then discussed. Finally, a selection
of decentralized algorithms are presented and categorized based on
what particular aspect of the hypothesis they are capable of meeting.

2.1 qualitative representation of regions

Before discussing decentralized algorithms and the data models they
are built upon, it is necessary to first consider the way in which the
internal structure of a monitored region is described. The underly-
ing phenomena can be considered a continuous field in geographic
space, and samples of this field can be recorded as a scalar quan-
tity by a geosensor network using sensors equipped to nodes within
the network. Specifically, this field is recorded using the function
sense : V → C where domain V is the set of nodes in the network
and C is the codomain recording their sensed attribute.

2.1.1 Simplification of sensor data

While some sensors, such as those used to detect algal blooms, may
express their results as a Boolean where the sensor either detects or
does not detect the presence of an algal bloom (i.e., sense : V →
{0, 1}); many other sensors, such as temperature and pressure sen-
sors, express their results as a scalar quantity (i.e, sense : V → R). In
order develop a qualitative spatial description of the field, the scalar
field recorded by the node’s sensors must be simplified. This research
will do so by modifying the sensor so that it records a Boolean value
(i.e., sense : V → R → {0, 1}), splitting the field into a collection of
high or low intensity regions based on a threshold value.

An example of thresholding continuous fields is shown in Figure
1, where the threshold value has been set to 50, with areas above this
value considered to be within the region and areas below this value
outside the region. Adopting a threshold value is however not the
only option for categorizing continuous fields. For example, the egg-
yolk model [15] adopts a third intermediate case for areas that may

7

or may not be within the region. For the sake of simplicity, this work
will focus on the crisp boundaries induced by threshold values.

0

25

50

75

100

0

1

a. Continuous field with thresh-
old boundaries

b. Resulting regions

Figure 1: Randomly generated continuous field split into regions with val-
ues greater than 50.

2.1.2 Topological relations between regions

Now that a mechanism has been established for the detection of re-
gions by a geosensor network, relations between these regions can be
considered. Specifically, this work makes use of qualitative spatial rea-
soning to model the topological relations between regions as a series
of algebraic relations [13].

There are two methods to consider when modeling topological re-
lations between regions; an axiomatic approach and a point-set ap-
proach. Both methods are capable of representing the same topologi-
cally distinct relations between two regions, as illustrated by Figure 2.
The axiomatic approach is best described by region connection calcu-
lus (RCC) [16–18], where all relations are constructed from the binary
relation connectedness.

Specifically, consider the connected topological space X where U is
the set of nonempty regular closed sets of X. Each element in U is
a region, which may have holes or multiple connected components.
For any two regions a and b, a is connected to b (i.e., aCb) if a ∩ b 6= ∅.
Building on this relation, region a is said to be part of b (i.e., aPb) if
a ⊆ b. From these two relations, the set of eight relations known as
RCC8 can be constructed, as shown in Figure 2. These relations are:
xDCy, where x is disconnected from y; xECy, where x is externally
connected to y; xPOy, where x partially overlaps y; xEQy, where x
and y are identical; xTPPy, x is a tangential proper part of y; xTPPIy,
where x is the inverse tangential part of y; xNTPPy, where x is a
non-tangential proper part of y; and xNTPPIy, where x is the inverse
non-tangential part of y.

8

DC
disjoint

EC
meets

PO
intersects

EQ
equals

TPPI
covers

TPP
covered by

NTPP
inside

NTPPI
contains

Figure 2: Eight distinct topological relations between black striped region x
and shaded grey region y. RCC8 and 4IM/9IM labels are provided.
Arrows indicate valid topological transitions between relations.

The axiomatic approach of the region connection calculus uses con-
nectedness for its fundamental primitive, considering both simple and
complex regions as a whole. Applying this model to a geosensor net-
work would require computing which subsets of nodes are path con-
nected (i.e., there exists a chain of connected nodes between them);
an approach that is well suited to this work.

The alternative method of using point-sets is best described by the
4-intersection model (4IM) [19]. This model uses the intersections be-
tween point sets as its fundamental primitive; specifically, the inter-
sections between the point sets of the regions’ interiors (◦) and bound-
aries (∂). The relations between any two regions a and b are then de-
scribed using the 4-tuple (∂a∩ ∂b, ∂a∩ b◦, a◦ ∩ ∂b, a◦ ∩ b◦). This model
was later extended to the 9-intersection model (9IM), additionally in-
cluding the point sets of regions’ complements (−) to form a 9-tuple
[20].

In either intersection model, eight valid relations are provided when
considering the topological relations between two regions, as shown
in Figure 2. It is important to note that unlike the region connection
calculus, the intersection models are only designed for simple regions
(i.e., homeomorphic to a disk, containing no holes or disconnected
components). While some extensions to the intersection models have
been proposed [21, 22] to distinguish topological relations between
complex regions, the axiomatic approach of the region connection
calculus is better suited for this work.

9

2.1.3 Topological change

Consider the eight distinct topological relations between a pair of re-
gions presented in the previous section. Assuming these regions were
capable of movement, there must be a way for the regions to transi-
tion between any pair of topological relations. Looking at Figure 2,
it is clear that some relations have more in common than others. For
example, the RCC8 relations TPP and NTPP have a greater similarity
than the relations DC and EQ. Freska, in his 1992 paper “Tempo-
ral reasoning based on semi-intervals” [23] introduces the notion of
a conceptual neighborhood, where “two relations between pairs of
events are (conceptual) neighbors, if they can be directly transformed
into one another by continuously deforming (i.e. shortening, length-
ening, moving) the events (in a topological sense).” These conceptual
neighbors are illustrated in Figure 2 with black arrows.

A conceptual neighborhood graph of topological relations was first
conceived of by Randell and Cohn [16] and later formalized with
respect to the RCC8 relations by Randell et al. [17], where it indicated
that, like the relations themselves, the direct topological transitions
can also be derived axiomatically.

The conceptual neighborhood graph of the RCC8 relations was in-
troduced along with these relations by Randell et al. [17], where it in-
dicated that, like the relations themselves, the direct topological tran-
sitions can also be derived axiomatically. Galton [24] first derives the
transitions by placing the RCC8 relations within a dominance space
by knowing the amount of A inside B and B inside A (discretized to
all, some, or none), and whether A and B share any boundary points.
This dominance space then draws possible transitions between rela-
tions using dominance relations. To clarify dominance relations, con-
sider the transition between DC and PO relations. At some point, the
boundaries of the regions must intersect (i.e., the EC relation) before
their interiors can. At this instant, neither the DC nor PO relations
hold true, meaning that the EC relation dominates both the DC and
PO relations, as shown in Figure 3.b.

Galton also describes the conceptual neighborhood by partitioning
the RCC8 relations into a phase diagram [7]. This diagram uses two
circular regions, one with a fixed radius and position, and the other
with a variable radius and position. Plotting the distance between the
two regions against the second region’s radius produces the phase
diagram shown in Figure 3.a. Applying this partition information
produces the mode space diagram as previously shown in Figure 3.b.

Egenhofer and Al-Taha, in their 1992 paper “Reasoning about Grad-
ual Changes of Topological Relationships” [25], construct the concep-
tual neighborhood graph of the 9IM using closest topological dis-
tance as a metric. Topological distance was calculated by finding
the symmetric difference between two topological relations’ 9-tuple

10

EQ

TP
PI

EC

TPP

NTPP

PO

d

r

DC

NTPPI

NTPP

EQ

NTPPI

POECDC

TPP

TPPI

a. Phase diagram partitioning con-
tinuous region-region relations
into discrete RCC8 relations.

b. Resulting mode space showing
dominance relations.

Figure 3: Conceptual neighborhood of RCC8 relations, adapted from [7].

values. For example, the difference between inside (010010111) and
contains (001111001) is 6, as digits 2–4 and 6–8 are different. To con-
struct the conceptual neighborhood graph, edges are added for each
relation, connecting it to the relation with the smallest topological
distance. This adds all edges present in Figure 2 bar the edges be-
tween the equal relation and overlaps, inside, and contains. These
three edges are then added to the graph as their topological distance
is no greater than the shortest path present (e.g. the distance between
overlaps and equal is 6, which is also the total distance of traversing
overlaps→covers→equals).

Recall from section 2.1.1 that thresholding partitions the space into
a collection of components that are either inside or outside the re-
gion. In a complex areal object, these are known as the positive and
negative region components respectively. Jiang and Worboys [26] cat-
egorize basic topological change according to the alterations possible
to a complex areal object’s containment tree. These five categories are:
insert, where a region appears; merge, where regions combine; delete,
where a region disappears; split, where a region separates into dis-
tinct components; and no change, where the region remains unaltered.
Expanding on these categories, they define six fundamental topolog-
ical events to cover complex topological changes. The first four are
the basic topological events appearance, disappearance, merge and split.
The last two are self-merge and self-split, which occur when a region
merges or splits with itself, causing an adjacent region to split or ad-
jacent regions to merge.

While it is also possible to define topological events by changes that
occur along the edge of a region, this work will restrict topological
events to those that occur at a single point, as this method is better
suited to the properties of geosensor networks. Figure 4 provides ex-
amples of these topological events.

For appearance and disappearance events, this would occur when a
single node detects a new region component and when the last node

11

Appear

Disappear

Merge

Split

Self-merge

Self-split

Figure 4: Types of topological events possible for dynamic regions where
the event is instigated at a single point.

detecting a region no longer detects that region. For merge events
this would mean that at some point a node has detected a connection
between the two regions, and for split events, this would occur when
the last node connecting the region no longer detects that connection,
splitting the region into multiple separate components. Self-merge
and self-split events do not need to be explicitly detected as they
coincide with split and merge events of adjacent regions.

2.2 maptree

The maptree is a formal structure that is that is well suited to de-
scribing topological change. This model was introduced by Worboys
in his 2011 paper “Modeling indoor space” [27] and further detailed
in his 2012 paper “The maptree: A fine-grained formal representa-
tion of space” [28]. Specifically, the maptree is a black-white edge la-
beled tree based on combinatorial maps and adjacency trees capable
of uniquely representing the topological structure of regions.

12

a

c

b

d

f

g e

0
1

2

54

3
M1

M3

M2

h 6
M4

Figure 5: Example region. Black lines represent boundaries between region
components.

Consider the region configuration shown in Figure 5, where the
region has been subdivided into a collection of region components
(or faces) numbered 1–6, by a series of nodes and directed edges la-
beled a–h. Given that this region configuration is composed of a set
of disconnected nodes and edges, it can also be considered a planar
embedding of a disconnected graph.

One of the components used to construct a maptree is a combi-
natorial map, which provides a unique symbolic representation of a
connected graph. A combinatorial map is constructed from a set of
halfedges (S), permutations or cycles of these halfedges (α), and in-
volutions or twins of these halfedges (τ). Together these produce the
triple M〈S, α, τ〉. As the the region configuration of Figure 5 consists
of multiple connected components, each connected component will
be given its own combinatorial map (i.e., M1–M4).

For example, the combinatorial map of the first connected compo-
nent, M1, the halfedges present are: S = {a, a, b, b, c, c}. As an edge
can bound two faces, each edge has been stored as two halfedges fac-
ing opposite directions. For clarity, only one half of each halfedge is
labeled in Figure 5, with the arrow indicating its direction.

The cycles of M1 are as follows: α = (a, b)(a, c)(b, c). Each cycle
defines the ordering of halfedges around a particular face, where the
face is the region component to the left of each halfedge. For example,
the cycle (a, b) describes the path of halfedges needed to describe face
0 whereas cycles (a, c) and (b, c) describe faces 1 and 2 respectively.

The final component of the combinatorial map is the involution or
twin of the halfedges, which are as follows: τ = (a, a)(b, b)(c, c). For
clarity, overline notation has been used to indicate the involution of a
halfedge, i.e., a is the twin of a, which borders region components 1

and 0 respectively.

13

Calculating the combinatorial maps for each of the connected com-
ponents would produce:

M1 〈{a, a, b, b, c, c}, (a, b)(a, c)(b, c), (a, a)(b, b)(c, c)〉,

M2 〈{d, d}, (d)(d), (d, d)〉,

M3 〈{e, e, f, f, g, g}, (e)(a, c)(e, f, g, f), (e, e)(f, f)(g, g)〉,

M4 〈{h, h}, (h)(h), (h, h)〉.

The second component used to construct a maptree is the adjacency
tree, which is a rooted black-white tree that makes use of the adja-
cency between region components, enabling them to be nested. An
alternative method for representing containment relations between
region components is to use a containment tree [29]. It is important
to note that for binary images, adjacency strictly implies containment
[30, 31]. This means that for regions with only positive and nega-
tive region components, the containment trees and adjacency trees
are identical. Later sections of this work will exclusively use the term
containment tree to better distinguish between adjacency relations
and containment relations.

In the case of a maptree, the black nodes represent connected com-
ponents whereas the white nodes represent region components, mean-
ing that edges represent instances where a region component borders
a connected component. The root of the tree is a white node that rep-
resents the exterior of the region, which in this case is region compo-
nent 0. Figure 6 shows the completed maptree where it can be seen
from its structure that there are edges between region components 0

and 1 and connected component M1, indicating that these two region
components are adjacent. As there are no connected components be-
tween region components 0 and 6, these two region components are
not adjacent.

At this point, the maptree represents the relations between region
components and connected components, but does not yet represent
the topology of the connected components. To account for this, the
cycles of the connected components provided by the combinatorial
maps will be used. Recall that the cycles define the ordering of halfedges
around a particular region component. As such, each edge will be la-
beled by the cycle of the connected component that describes that
region component. For example, cycle (a, b) of connected component
M1 describes the boundary between M1 and region component 0, and
so will be placed on edge (0, M1).

2.2.1 Maptree storage

For the maptree to be of use in this work, it must be possible to store
its information compactly within a data structure so that the nodes

14

1 2 3 4 5

6

0

M1 M2 M3

M4

ab d e

a̅c b̅c̅ d̅ g̅ e̅f̅gf

h

h̅

Figure 6: Maptree of the region configuration of Figure 5.

within the geosensor network can make use of it. The DCEL (Doubly-
Connected Edge List) [32, 33] is a widely used data structure for the
storage of planar embeddings of graphs. Recall that the region config-
uration shown in Figure 5 is a planar embedding of a disconnected
graph, meaning that if it is possible to store this information in a
DCEL table, it is also possible to generate a maptree from the DCEL
table.

To explain the components of DCEL, table 1, which is based on the
region configuration of Figure 5, will be used as an example. A stan-
dard DCEL table uses the following columns: halfedge, twin, next,
previous and face. Each edge has been stored as two halfedges, with
the halfedge’s id stored in the halfedge column and its involution’s
id stored in the twin column. The face column then stores the id of
the face or the region component to the left of the halfedge. For exam-
ple, region component 0 is to the left of halfedge a, whereas region
component 1 is to the left of halfedge a.

The next and previous columns store the ids of the halfedges that
immediately succeed and precede the current halfedge. This is done
by performing an anticlockwise traversal of the halfedge’s face. For
example, given that halfedge f is adjacent to face 5, the next halfedge
is e whereas the previous halfedge is g. With these five columns, it
is possible to completely represent the region configuration shown in
Figure 5.

Now that the DCEL has been described, it can be used to construct
the maptree. The steps necessary to generate a maptree are described
in algorithm 1. The generateMaptree function of this algorithm can be
broken into two stages, with the first assigning a connected compo-
nent number to each record’s component column in the DCEL table
(lines 2–7) and the second constructing the maptree as a graph (lines
8–11).

15

Halfedge Twin Next Previous Face Component

a a b b 0 M1

a a c c 1 M1

b b a a 0 M1

b b c c 2 M1

c c a a 1 M1

c c b b 2 M1

d d d d 0 M2

d d d d 3 M2

e e e e 0 M3

e e f f 5 M3

f f e g 5 M3

f f g e 5 M3

g g f f 5 M3

g g g g 4 M3

h h h h 2 M4

h h h h 6 M4

Table 1: DCEL table augmented with connected component labeling. Table
shows entries for Figure 5.

For its input, this algorithm takes a standard DCEL table with an
additional component column with records that have been initialized
to ∅. After processing these records, the algorithm outputs a stan-
dard maptree in the form of a graph G = (V, E) where V represents
the set of black and white nodes comprising the maptree and E rep-
resents the set of edges (i.e., E ⊆ V × V). Additionally, these edges
are equipped with a label attribute, which is used to store the cycle
of halfedges from the edge’s connected component that describes the
edge’s region component.

The first stage of the generateMaptree function begins by setting the
connected component iterator n to 0, which will be incremented every
time a new connected component is discovered (line 2). While each
connected component will be assigned a number, it is important to
note that, like table 1, the M prefix will be added so that the connected
components are not confused with the region components.

Each record of the DCEL table is then iterated through (line 3). If
a record is found with no entry in its component column, n is incre-
mented and set as the component for that record (lines 4–6). Using
record a as an example, the component column would be set to M1.

The assignComp function is then applied to that record (line 7). This
function is recursive, with the goal of seeking out all records within
the same connected component. First, all records within the nomi-

16

Algorithm 1 Maptree generation algorithm

1: generateMaptree
2: let n := 0
3: for all i ∈ DCEL do
4: if i.component = ∅ then
5: set n := n + 1
6: set i.component := Mn
7: assignComp(i)
8: for all j ∈ DCEL do
9: if edge(j.face, j.component) 6∈ G then

10: insert edge(j.face, j.component) into G
11: set edge(j.face, j.component)label := cycle(j).halfedge
12: twin(record)
13: return select ∗ from DCEL where twin = edge.halfedge
14: next(record)
15: return select ∗ from DCEL where next = edge.halfedge
16: cycle(startRecord)
17: let currentRecord := startRecord
18: let items := {startRecord}
19: while next(currentRecord) 6= startRecord do
20: set currentRecord := next(currentRecord)
21: set items := items∩ currentRecord
22: return items
23: assignComp(record)
24: for all i ∈ cycle(twin(record)) do
25: set i.component := Mn
26: for all j ∈ cycle(twin(record)) do
27: if twin(j).comp 6= ∅ then
28: assignComp(k)

nated record’s twin cycle would set their component column (lines
24–25). This is done by using the twin function, which returns the
twin of that record, and the cycle function (lines 16-22), which deter-
mines all records in a boundary cycle. The cycle function does so by
iterating through and collecting records where the halfedge column
of the next record equals the current record’s next column, until it
arrives at the original record. Using record a as an example, the twin
function would return record a and the cycle function would return
records a and c.

After setting the component column, these records are iterated
through to see if their twin’s component column is empty (lines 26–
27). If this is the case, the assignComp function is applied to that record
(line 28). Following these steps, records would set their component
column to M1 in the following order: a→ ac→ cb→ ab.

Once this stage of the algorithm has completed for all records in
the DCEL table, the component column will then be filled as shown
in Table 1. The second stage of the generateMaptree function iterates
again through all records (line 8). If it finds an edge that is not stored

17

in the maptree, it will add it to the maptree graph and assign that
edge a label (lines 9–10). Using the first record as an example, the
edge (0, M1) would be added with the label ab.

2.2.2 Maptree dynamism

The maptree is based in part on Stell and Worboys’ 2011 paper “Rela-
tions between adjacency trees” [34], which models dynamic behavior
of regions using adjacency trees to represent the configurations of
a region at different times. The type of relation between the nodes
of two subsequent adjacency trees was termed the bipartite relation,
which corresponds to the type of change that occurred to the region.
The paper then demonstrated that these bipartite relations are com-
posed of sequences of atomic relations, of which there are four: insert,
split, merge, and delete.

While his 2012 paper [28] lays the groundwork for use of the map-
tree in the description of region dynamism, Worboys’ 2013 paper “Us-
ing maptrees to characterize topological change” [35] provides a more
comprehensive description of this. This paper, like [34], makes use of
four atomic relations on nodes of the maptree to describe changes
to the region’s configuration. These relations are insertion, deletion,
unfolding, and folding, and come with corresponding edge label op-
erations.

Insertion occurs when a new white node is added to the maptree
and corresponds to the appearance of a region component, whereas
deletion corresponds to the disappearance of a region component.
Unfolding occurs when a white node splits into two nodes and cor-
responds to the merging of two region components. Folding occurs
when two white nodes merge into a single node and corresponds to
the splitting of two region components. These four atomic relations
are then used to construct a conceptual neighborhood [23] that corre-
sponds to the RCC (Region connection calculus) [17], although with
a greater distinction between the individual relations.

2.3 decentralized algorithms

The following section categorizes decentralized algorithms based on
their capabilities. Each subsection describes a collection of algorithms
capable of meeting the requirements of some aspect of the hypothesis,
but are lacking in some other respect. Collectively, the algorithms of
this section meet all the requirements needed to test the hypothesis.

2.3.1 Decentralized monitoring of regions

When representing the structure of areal objects, two methods im-
mediately present themselves: the containment tree, which identifies

18

strict containment between region components; and adjacency rela-
tions, which identify neighboring regions. The containment tree has
been shown by Worboys and Bofakos [29] to be computable using the
boundaries of region components. Duckham et al. [36] demonstrated
that it is possible to compute the containment tree and adjacency
relations of different types of region objects using decentralized (in-
network) algorithms in a static geosensor network.

Additionally, a particular string of work has developed techniques
for detecting topological changes in regions as changes in the con-
tainment tree [37–42]. Other work has further extended this approach
by adding a third, intermediate category [43] based on the egg-yolk
model [15]. This additional category may be useful in applications
where there is uncertainty or conflict among the sensors at the bound-
ary of two regions.

The common limitation of all these approaches is that they require
the underlying communication graph of the network to be known, to
remain constant, and to be plane. A plane graph consists of a planar
graph (i.e., a graph that can be drawn with no intersecting edges) and
a particular planar embedding of that graph where the edges explic-
itly do not intersect. To ensure the communication graph is static, the
nodes must not move throughout the execution of the algorithm. Fur-
ther, for a plane communication graph to be generated, the coordinate
information for each node must be known.

Recent work has addressed some of these limitations, for example
Jeong and Duckham [44] present a collection of decentralized algo-
rithms for computing relations between regions, and Jeong et al. [45]
identify critical points (i.e., peaks, pits, and passes), and the topolog-
ical structure connecting them, of scalar fields. Both of these sets of
algorithms are able to perform their task without coordinate infor-
mation and without the restriction that the communication graph be
plane, although they are still restricted to static nodes and regions.
Jeong continued this work in his thesis “Qualitative characteristics of
fields monitored by a resource-constrained geosensor network” [46],
adapting the scalar field algorithms to dynamic fields.

2.3.2 Group movement patterns

Considerable work has already been completed using centralized ap-
proaches to detecting and classifying movement patterns of mobile
objects [47–50]. Such movement patterns include flocking [51, 52], con-
voys [53], and leadership [54–56]. Some work has also been completed
using decentralized approaches to movement pattern detection. For
example, both flocking [57, 58] and convoys [59] have been detected.
While these approaches do account for movement in the nodes, they
are only capable of discovering movement patterns and not sensing
information about their local environment.

19

2.3.3 Location-free, mobile node based approaches

So far, the algorithms that have been introduced either require loca-
tion information and static networks, or they account for movement
in the nodes but are not designed to sense information about their lo-
cal environment. There are however decentralized algorithms that are
capable of providing information about the characteristics of geosen-
sor networks with mobile nodes without relying on coordinate infor-
mation.

While location information required for geosensor networks is gen-
erally taken to mean that the nodes are equipped with location sen-
sors such as GPS, this is not necessarily the case. Decentralized algo-
rithms have been specified that use distance estimation to determine
the position of nodes in the network [60–63]. However, these algo-
rithms assume that the nodes are static, although some work has been
completed that can account for some node mobility [64, 65]. Based on
Nagpal et al.’s work [63], Liu et al. [66, 67] devised an algorithm
capable of estimating the distance and therefore position of mobile
nodes in a geosensor network. Other work has analyzed the effect of
different types of node mobility on these types of algorithms [68].

Work focused on monitoring the health of geosensor networks has
been conducted based on the Push-Sum algorithm [69], which spreads
a mass value throughout a static network via gossiping. Measuring
how this mass value deviates from the expected values is used as a
proxy for the amount of communication failures and network “churn”
(number of nodes entering and leaving the network). This mass-based
approach has been extended to networks with mobile nodes to detect
these communication failures [70, 71] as well as network churn [72].

An important related aspect of working with geosensor networks
is clustering, which is the partitioning of the network into a series
of regions. Some work has been completed to account for node mo-
bility when establishing and maintaining clusters [73, 74]. Using a
mass-based approach, Pruteanu and Dulman [75] devised an algo-
rithm that is able to divide a network of mobile nodes into regions
and maintain the positions of these regions. However, these regions
do not correspond to sensed values, while other approaches take the
closeness of sensed values into account when partitioning the net-
work [76]. The key attribute common to these mass based algorithms
is that they are not just capable of running on geosensor networks
with mobile nodes, but actually rely on this mobility to perform their
function. This exploitation of movement through the exchanging of
information is known as the mobility diffusion effect [57, 65].

20

2.4 summary

It has been argued that decentralized algorithms are currently capa-
ble of detecting structure and changes in the topological relationships
of complex areal objects, provided that the nodes are stationary and
that the nodes are aware of their location. While some recent work
has adapted decentralized algorithms to detect the qualitative char-
acteristics of scalar fields using location-free geosensor networks, the
geosensor network must still be static.

It has also been presented that decentralized algorithms exist to
monitor movement patterns of mobile nodes, but not the topolog-
ical relationships of sensed regions. Lastly, decentralized algorithms
have been introduced that are capable of providing information about
the characteristics of mobile geosensor networks without relying on
coordinate information, however they have yet to be applied to sens-
ing external phenomena. In summary, there is a clear gap in the cur-
rent research for decentralized algorithms that qualitatively analyze
and monitor dynamic spatial phenomena using geosensor networks
where the nodes are both mobile and coordinate-free.

Therefore, it is the purpose of this thesis to produce decentralized
algorithms capable of filling this gap. Based on the specifications of
Chapter 3, Chapters 4 and 5 present new decentralized algorithms ca-
pable of determining the internal structure of regions and discovering
any qualitative relations that may be present.

21

3
M E T H O D O L O G Y

In order to design, implement and test decentralized algorithms ca-
pable of fulfilling the research questions outlined in the first chapter,
an approach must be formalized. To design decentralized algorithms
capable of running on a geosensor network, a formal model must be
selected for both the decentralized algorithms and the geosensor net-
work they run on. These decentralized algorithms must then be imple-
mented in an agent-based simulation system, which in this case will
be NetLogo [77]. Finally, these algorithms must be evaluated based
on the criteria of scalability and veracity.

3.1 algorithm design

3.1.1 Static geosensor network

As discussed in the previous chapter, geosensor networks are a col-
lection of nodes tasked with monitoring their local environment in
geographic space and communicating with their local neighbors. In
order to carry out these tasks, nodes in a geosensor network require
the following three features; the capability to capture environmen-
tal data from sensors, to compute with this data using an on-board
microcontroller, and to communicate data using short-range wireless
communication [8].

The first feature of a functional geosensor network is that the nodes
comprising the network are capable of sensing their environment.
Recall from section 2.1.1 that sensors are modeled as functions, i.e.,
sense : V → C where V is the set of nodes in the network and the
codomain C is the corresponding value returned by their sensor. Us-
ing the geosensor network from Figure 7 as an example, nodes are
equipped with a specific sensor, s, capable of sensing whether the
node is within the grey region or not. Assuming that this senor re-
turns 1 if the node is within the region and 0 if it is not, then this
particular sense function can be written as follows; s : V → {0, 1}.

The second feature of a geosensor network, that nodes are capa-
ble of performing computations on sensed data, is described using
decentralized algorithms, as discussed in the next section. One com-
ponent that is required for decentralized algorithms is that each node
is equipped with a unique identifier. This is achieved with the identi-
fier function id : V →N.

The final feature of a geosensor network, that nodes are able to com-
municate wirelessly, is formally modeled as an undirected graph G =

23

c

1

4

6

10

7

9

5

2

8

3

11
12

Figure 7: Example geosensor network. Nodes that have sensed the grey re-
gion are colored black, while nodes that have not are white. One-
hop wireless communication links between nodes are represented
as black lines, with a maximum distance of c.

(V, E). In this communication graph, V represents the set of nodes
comprising the geosensor network and E represents the set of one-
hop communication links between those nodes, i.e. E ⊆ V×V. Using
the geosensor network from Figure 7 as an example, there is a set of
12 nodes: V = {1, 2, . . . , 12} and 21 edges: E = {(1, 4), (1, 6), . . . , (9, 12)}.

As a direct consequence of the communication network, each node
must be aware of its neighborhood. This neighborhood, which is the
subset of edges from the communication graph incident to that node,
is sensed by the nbr function. Formally this is written as nbr : V → 2V ,
where nbr(v)→ {v′ ∈ V | (v, v′) ∈ E}. Using node 2 from the geosen-
sor network in Figure 7 as an example, there is a set of 4 neighboring
nodes: nbr(2) = {3, 4, 5, 7}.

It is important to note that the communication graph of Figure 7 is
neither planar nor plane (i.e., edges in the graph are able to and do
intersect without the presence of a node). While some decentralized
algorithms require that the communication network be plane, the al-
gorithms described in this research make no such specification. As
such, the geosensor networks used will be constructed using the Unit
Disk Graph (UDG), where only nodes within a specified distance of
c are able to directly communicate [8].

3.1.2 Algorithm specification

Now that a formal model has been specified for the geosensor net-
works, decentralized algorithms can be described. The decentralized
algorithm specification style used in this research is based on the
work developed by Santoro [78] and extended by Duckham [8]. This

24

specification style was chosen as it is specifically tailored towards the
description of decentralized algorithms. This focus on decentraliza-
tion is in contrast to the majority of styles that assume a centralized
system, giving little focus as to the local knowledge of nodes, nor to
the communication between these nodes.

This not to say that the chosen style is the only method capa-
ble of representing and analyzing decentralized systems. Milner’s
π-calculus [79] models the changing connectivity of interactive sys-
tems in terms of both communication and computation. π-calculus,
while a powerful set of formalisms that can be applied to decentral-
ized systems, exist at a very low level of abstraction where the degree
of fine-grained control over all aspects of the system mean that even
simple examples produce verbose and difficult to interpret code.

Like π-calculus, the asynchronous network algorithms and input-
output automata of Lynch [80] produce precise formal descriptions of
decentralized systems, although at a higher level of abstraction. Such
formal descriptions allow for aspects of decentralized systems to be
formally proven. For example, liveness and safety are properties that
allow for formal proofs to guarantee that specified outcomes will or
will not occur respectively. Similar proofs can also be developed to
detect deadlock, where the system enters a cyclic pattern it is unable
to recover from.

Such tools, while extremely useful for debugging any decentralized
system’s design before implementation, come at a cost: requiring the
very precise formulation of algorithms in a way that is difficult to
scale to more practical algorithm design, which must take into ac-
count a wide range of extended programming constructs, such as
control flow, uncertainty in sensed data, and node communication.
In this way, the specification style of Santoro and Duckham comple-
ments these fine-grained tools, providing a higher level of abstraction
suitable for the design of algorithms that are closer to a practical im-
plementation, and more suited to simulation and experiments. Ad-
ditionally, this specification style has the benefit of closely mapping
to the implementation of the algorithms, which will be discussed in
section 3.2.

The chosen specification consists of four components; restrictions,
states, events, and actions. To aid in the explanation of these com-
ponents, an example algorithm will be used. Consider the geosensor
network from Figure 7 and suppose it is necessary for each node in
the network to know which nodes are within the shaded region. This
can be achieved using a surprise flooding algorithm similar to that
found in [8], the specifications of which can be found in algorithm
2. Surprise flooding has been chosen for the example as it serves as
the basis of many key components of the algorithms featured in this
work.

25

Algorithm 2 Surprise flooding algorithm

1: Restrictions: reliable communication; connected, bidirected communica-
tion graph G = (V, E); neighborhood function nbr : V → 2V ; sensor
function s : V → {0, 1}; node identifier function id : V →N.

2: State transition system: 〈{idle},∅〉
3: Initialization: All nodes in state idle

4: Local variables: Set S ⊂N, initialized to S := ∅
idle

5: Spontaneously
6: if s̊ = 1 then
7: broadcast (msge, i̊d)
8: Receiving (msge, id′)
9: if id′ 6∈ S then

10: set S := S ∪ {id′}
11: broadcast (msge, id′)

Restrictions define the assumptions made about the geosensor net-
work and are listed in the algorithm’s header (line 1). In this case, re-
liable bidirected communication between the nodes, a neighborhood
function to determine the node’s neighbors, a sensing function to de-
tect whether a node is within a region, and a node identifier function
to uniquely identify nodes are all assumed.

States allow for the retaining of knowledge from previous interac-
tions, allowing nodes to respond differently to the same event based
on this information. States are formatted in small capitals (i.e., idle)
and are described using the state transition system (line 2). The state
transition system is a tuple of length two, with the first field listing
the set of possible states, and the second field listing the set of pos-
sible transitions between these states. While algorithm 2 has a very
simple state transition system consisting of a single state and no tran-
sitions, module 1 from Chapter 4 utilizes a more complex system,
where nodes may transition from the init, to the lead state, before
transitioning to the regn state.

Events model the interaction between a node and its environment,
including interaction with other nodes. There are three types of events
that may occur, all of which are formatted in italics (i.e., Spontaneously).
The first type are trigger events, which occur when a node detects
the activation of a trigger. These are indicated by the When keyword.
While none are present in this algorithm, in the following algorithm
this is used to trigger a response when a node’s sensed value changes.

The second type are communication events, which occur when a
node receives a message from its neighbor. This is indicated with the
Receiving keyword, such as when a node receives a msge message (line
8). Messages are broken up into a sequence of fields, taking the form
of the tuple M = 〈 f1, f2, . . . , fn〉. The first field is always the message
type header, and is typeset using a typewriter font (i.e., msge). By
requiring messages to be typed, nodes are able to respond differently

26

based on the type of message received. Messages are required to have
a fixed number of fields (n), which can vary based on the message’s
type. The later fields then carry data required for the algorithm’s
computation (e.g., i̊d in line 7).

Lastly, there are spontaneous events, which originate from outside
the network. An example of this would be an observer turning on a
node. In this algorithm, a spontaneous event occurs when the algo-
rithm begins (line 5), causing nodes that have detected that they are
within a region to broadcast a message containing their id.

Actions are the sequences of operations that nodes use to respond
to events, and are formatted in bold (i.e., broadcast). These actions
are the traditional “program” aspect of decentralized algorithms and
are atomic in nature as they cannot be interrupted by other events, i.e.,
nodes can only react to one event at a time. In the case of algorithm
2, when a node detects it is within a region, it broadcasts a message
containing its id (lines 6–7). When a node receives this message, it
checks to see if has already stored the received id in its local storage
S (lines 8–9). If it has not, it stores the id and rebroadcasts the message
(lines 10–11).

To reduce ambiguity, algorithms in this work make the distinction
between global variables and functions, which use no notation (e.g.,
id); the local versions of these functions and variables, which use over-
dot notation (e.g., ˚id); and received versions of these functions and
variables, which use prime notation (e.g., id′).

Using the geosensor network in Figure 7 as an example, at the
completion of this algorithm each node will have the node ids 4, 5, 7,
and 9 stored in its local memory, i.e. S = {4, 5, 7, 9}.

3.1.3 Dynamic geosensor network

While the surprise flooding algorithm described previously is capable
of determining which nodes are within a region, it must do so with
the assumption that the region and nodes are immobile. This is a
limitation of static geosensor networks that needs to be addressed.
Consider a geosensor network where the nodes and sensed region
are mobile, such as that shown in Figure 8.

1

4
6

10

7

9

5

2

8

3

11 12

1

4

6

10

7

9

5
2

8

3

11
12

1
4

6

10 7

9

2

3

11 12

8

5

a. t=100. b. t=200. c. t=300.

Figure 8: Example dynamic geosensor network at three sequential timesteps
with mobile grey region.

27

Given that the communication graph of the geosensor network is
based on the UDG and that the nodes are mobile, edges must be
added and removed from the communication graph when nodes
move within and without the communication distance. For example,
in Figure 8, a communication link is added between nodes 6 and 11

at time 200 and removed at time 300.
Representing these changes will require extending the static com-

munication graph G = (V, E) to a time varying communication graph.
This graph can be formally represented as G(t) = (V, E(t)), where
G(t) is the communication graph at time t and E(t) is the set of com-
munication edges at time t.

This time varying communication graph can then be used to extend
the neighborhood function nbr. Formally this is written as nbr : V ×
T → 2V , where nbr(v, t) → {v′ ∈ V | (v, v′) ∈ E(t)}. Using node 10

from the geosensor network in Figure 8 as an example, there are three
different sets of neighboring nodes: nbr(10, 100) = {6}, nbr(10, 200) =
{6, 11}, and nbr(10, 300) = {4, 6}.

The sense function can also be extended to account for dynamism.
Again, assuming that the senor returns 1 if the node is within the
region and 0 if it is not, then the sense function for any given time
can be written as s(t) : V × T → {0, 1}. Using node 4 from Figure
8 as an example, this would give three different values: s(100) = 1,
s(200) = 0, and s(300) = 1. By defining a time varying sense function
the nodes are able to account for both node movement and region
movement.

While the surprise flooding algorithm described previously is capa-
ble of determining which nodes are within a region for a static geosen-
sor network and region, this would be insufficient for the geosensor
network shown by Figure 8. Alternatively, the algorithm could record
the times a node enters or exits the region. It would then be a sim-
ple task of querying these records to determine how many nodes are
within the region at any given time.

Algorithm 3 Surprise flooding algorithm for dynamic networks

1: Restrictions: reliable communication; connected, bidirected communica-
tion graph G(t) = (V, E(t)); neighborhood function nbr : V × T → 2V ;
sensor function s : V × T → {0, 1}

2: State transition system: 〈{idle},∅〉
3: Initialization: All nodes in state idle

4: Local variables: Set S ⊂ {0, 1} × T ×N, initialized to S := ∅
idle

5: When s̊(now) changes
6: broadcast (msge, s̊(now), now, i̊d)
7: Receiving (msge, s′, t′, id′)
8: if (s′, t′, id′) 6∈ S then
9: set S := S ∪ {(s′, t′, id′)}

10: broadcast (msge, s′, t′, id′)

28

The specifications of this algorithm and geosensor network are
shown in algorithm 3, which has extended its restrictions and local
storage (lines 1 and 4) to handle mobility in both the nodes and the
sensed region. In this algorithm, nodes that change their sensed value
(either through moving in/out of the sensed region or the region
moving towards/away from the node) broadcast a message to their
neighbors with their new sensed value, the current time and their id
(lines 5–6). Nodes receiving this message will, as previously, check
to see if it has already stored the received record (lines 7–8) and if it
hasn’t, stores the record and rebroadcasts the message (lines 9–10).

Of note in Figure 8 and algorithm 3 is that while the nodes may
change position, they are not aware of their own position. While some
decentralized algorithms require a position function for their nodes
(i.e., p : V × T → R2), the algorithms described in this research make
no such restriction.

Using the geosensor network in Figure 8 as an example, at the
completion of this algorithm each node will have the following stored
in its local memory:

S = {(0, 100, 1), (1, 300, 1), (0, 100, 2), (1, 200, 2), (0, 100, 3), (1, 100, 4),
(0, 200, 4), (1, 300, 4), (1, 100, 5), (0, 300, 5), (0, 100, 6), (1, 100, 7), (0, 200, 7),
(0, 100, 8), (1, 100, 9), (0, 200, 9), (0, 100, 10), (0, 100, 11), (0, 100, 12)}.

Using this data, it can be deduced that there were four nodes within
the region at time period 100 (4, 5, 7, 9), two nodes at time period 200

(2, 5), and three nodes at time period 300 (1, 2, 4).

3.2 algorithm simulation

Now that a formal model for specifying geosensor networks and the
decentralized algorithms that run on them has been chosen, it is now
possible to implement these algorithms on simulated geosensor net-
works. Simulated networks, as opposed to implementation on actual
hardware and field deployment, have been chosen for this work as
it is quicker and easier to implement the specifics of node hardware
and the communication protocols can be abstracted.

While there are several programs available to simulate sensor net-
works (e.g., ns-3, OMNet++, TOSSIM), their development is focused
on the specifics of node hardware and communication protocols. For
this reason, agent based modeling (ABM) systems will be used in-
stead. ABM systems consist of a set of autonomous agents within a
simulated environment. This research maps well to this framework,
with agents acting as geosensor nodes and the simulated environ-
ment representing the geographic environment. Some examples of
ABM systems are NetLogo, MASON, Repast, and Swarm. Out of
these options NetLogo will be used in this research.

29

3.2.1 NetLogo simulation environment

The NetLogo simulation environment [77] was chosen for this project
as it is an actively developed, cross-platform, and open-source simu-
lation system that is well suited for the modeling of complex multi-
agent systems. Of particular value is its ease of use when program-
ming as the coding style maps very closely with the algorithm spec-
ification style. Figure 9 shows how closely the implementation of al-
gorithm 3 in NetLogo matches that of the algorithm specification.

to go

ask nodes [

node_movement_procedures

if state = "IDLE" [step_IDLE stop]

]

simulation_visualization_procedures

tick

end

to step_IDLE

if s != s_old [;; When s(now) changes

broadcast (list "msge" s ticks who)

]

while [has-message "msge"] [

;; Receiving message (msge, s’, t’, id’)

let message received "msge"

let s’ item 1 message

let t’ item 2 message

let id’ item 3 message

if (member? (list s’ t’ id’) Storage = false) [

set Storage lput (list s’ t’ id’) Storage

broadcast (list "msge" s’ t’ id’)

]

]

end �
Figure 9: NetLogo code for algorithm 3.

Before discussing the specifics of any code, it is important to first
discuss the way in which NetLogo simulates an algorithm. NetLogo
uses a pseudorandom number generator where random seeds are
generated at the start of each simulation based on the current date
and time. It is important to note that all random and scheduling
functions draw from this generator, meaning that every simulation
is entirely deterministic. A deterministic approach to simulation al-
lows for reproducibility when assigning a specific random seed, and
is particularly useful when debugging code. Figure 10 shows a sim-

30

ulation of algorithm 3 on a geosensor network with 200 nodes. The
area used for simulating the environment is defined by a two dimen-
sional grid of discrete square cells, called patches, with arbitrary di-
mensions. These patches can be assigned attributes, and in the case of
Figure 10, there is a grid of 640×480 patches with a region attribute
coloring some patches grey.

Figure 10: Screenshot of the Netlogo simulation environment running algo-
rithm 3 showing the world simulator (center), simulation controls
(left and top), and simulation output (bottom and right).

The primary type of agents in NetLogo’s simulation system are
referred to as turtles and are capable of running their own code in
addition to interacting with their environment and each other. In this
work, these turtles are re-purposed as mobile geosensor nodes and
are shown as black or white circles depending on their sensed value
in Figure 10. Every simulation begins by placing a specified num-
ber of nodes within the world at random locations and with random
headings. Simulating communication between nodes is done using
the links agent type. These communication links are represented with
black lines between nodes that are within a specified communication
range, which in the case of this example is 40 patch widths.

The unit NetLogo uses to measure time is called a tick and repre-
sents the amount of time used to execute one complete run-through
of the simulation procedures. The speed of these ticks can be altered
using the simulation controls at the top of the window. Clicking the
go button activates the go procedure, which first asks the nodes to
move and update their sensed value. The nodes then run a specific
procedure determined by their current state, which in this algorithm
is always idle. After this, some visualization procedures are run to
ensure that the nodes are colored according to their sensed values
before finally bringing forward the simulation one time step. The rest

31

of the code then functions identically to that of the specifications of
the algorithm.

A powerful feature of NetLogo is the ability to read the outputs of
the agents (i.e., the turtles, links and patches). This output can also
be scripted, with the simulation of Figure 10 outputting the storage
of node 0.

3.2.2 BehaviorSpace

When evaluating decentralized algorithms on geosensor networks, it
is necessary to vary simulation parameters and record the results in
order to have a detailed understanding of the algorithm’s effective-
ness. NetLogo’s BehaviorSpace tool is capable of automating this, al-
lowing simulations to be run many times under varying parameters.
BehaviorSpace then records the specified outputs to a csv (comma
separated value) file. A key feature of BehaviorSpace is that each run
of the experiment is executed independently, meaning that the simu-
lation can assign individual runs to separate processor cores.

To give an example of such an experiment, suppose it is necessary
to determine how the amount of messages sent by algorithm 3 in-
creases with the size of the geosensor network. This would involve
varying the network size and recording the amount of messages sent
after a specified time period has elapsed. An output of this can be
seen in Figure 11 where the network sizes of 100, 200, 300, 400, and
500 were chosen. This experiment has been run 100 times for each net-
work size with a region shape identical to that of Figure 10. Messages
were measured after 500 time steps and nodes were able to move 10

times.

Regression curve: y = 0.68x2, R2 = 0.99

0

50000

100000

150000

200000

0 100 200 300 400 500
Network size

M
es

sa
ge

s
se

nt

Figure 11: Graph plotting the relationship between network size and num-
ber of messages sent by the network with fitted curve.

32

Using this data a curve can be fitted using regression analysis to
determine the precise relationship between the size of the geosensor
network and the amount of messages sent by the nodes. From this
graph, it can be observed that this relationship is polynomial.

3.3 algorithm evaluation

Now that it is possible to construct experiments to determine the
interactions between simulation parameters, the decentralized algo-
rithms can be formally evaluated. The ways in which decentralized
algorithms are evaluated can be divided into two categories: scalabil-
ity and veracity.

3.3.1 Scalability

When evaluating scalability, the primary concern is how the amount
of communication is affected by an increase in network size. This
is because the nodes will have limited battery supply and wireless
communication uses by far the most energy of any of the nodes’ sys-
tems. Considering the amount of communication necessary for the
entire network as a function of network size is known as communica-
tion complexity, whereas the amount of communication for individ-
ual nodes is known as load balance.

Communication complexity

This work will use big-oh notation to categorize the algorithms into
orders of scalability. Specifically, write O(f (n)) (where n is the net-
work size) to mean that the amount of communication has an upper
bound of some constant of that function. For example the communi-
cation complexity of algorithm 3 is 0.68n2, which in big-oh notation
would be O(nk). Figure 12 shows the different classes of functions
that are possible, listed in order of decreasing efficiency.

33

Network size (n)

C
om

m
un

ic
at

io
n

re
so

ur
ce

s

exponential : O(kn)
polynomial : O(nk)
linarithmic : O(n log(n))
linear : O(n)
logarithmic : O(log(n))
constant : O(k)

Figure 12: Typical response curves for communication complexity, after [8].

These orders of scalability can be used to evaluate the relative effi-
ciencies of related decentralized algorithms. For example, Figure 13

illustrates that algorithms 1 and 2 have linear orders of scalability,
O(n), whereas algorithm 3 has the less efficient polynomial order of
scalability, O(nk).

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000
fish

To
ta

l m
es

sa
ge

s
se

nt

●
●
●

Alg 1: y = 19.71x, R2 = 0.9986
Alg 2: y = 18.78x, R2 = 0.9988
Alg 3: y = 17.62x + 0.08x1.93, R2 = 0.9947

Figure 13: Scalability of communication in terms of total number of mes-
sages sent with change in numbers of fish for Algorithms 1—3,
adapted from [9].

This graph originates from prior work on decentralized monitoring
of moving objects in transportation networks [9]. In this paper, three
algorithms are utilized that run at each cordon of a cordon-structured
network (a transport network augmented with checkpoints capable
of logging the passing of moving objects) to record the time periods
that agents (referred to as fish) are on adjacent edges. Algorithm 1

assumes that cordons sharing an edge are able to communicate with

34

each other whereas algorithm 2 assumes that cordons are unable to di-
rectly communicate with each other and must use the agents to ferry
the data between cordons. As it takes time to ferry the data, record
completion is delayed. Algorithm 3 extends algorithm 2 by allowing
agents to communicate with each other on the edges, reducing the
delay in record completion.

As the number of cordons is fixed, this leads to linear scalability
for algorithms 1 and 2 as communication only occurs when fish pass
cordons. The reason for algorithm 3’s less efficient communication
complexity is due to its additional requirement of fish-fish commu-
nication. As increasing the number of fish also increases the number
of fish-fish communication events, this leads to a worst case scenario
of the communication complexity scales with the square of the total
number of fish.

Load balance

In addition to testing the scalability of the entire network, scalability
can also be evaluated based on the amount of communication of indi-
vidual nodes. This is known as load balance. Like the previous graph,
Figure 14 originates from decentralized monitoring of moving objects
in transportation networks. This work additionally tested for load bal-
ance, which was calculated using the maximum communication load
of any node in the network to determine the worst-case communica-
tion complexity. In the case of this paper, all three algorithms exhibit
linear load balance, O(n).

0

500

1000

1500

0 500 1000 1500 2000
fish

A
m

ou
nt

 o
f m

es
sa

ge
s

se
nt

●
●
●

Alg 1: y = 0.6321x, R2 = 0.9833
Alg 2: y = 0.3183x, R2 = 0.9837
Alg 3: y = 0.3183x, R2 = 0.9837

Figure 14: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node during a run of
Algorithms 1—3, adapted from [9].

35

3.3.2 Veracity

Veracity tests the accuracy of decentralized algorithms by comparing
the results of the algorithms with the actual results as determined by
the environment. An example of this is shown in Figure 15 where two
types of nodes (fearful and aggressive) are tasked with identifying the
number of regions in their local environment. In this case there are
two actual regions that the nodes initially misidentify as up to six
regions. Over time, the nodes become progressively more accurate
before eventually determining that there are two regions.

0

3

6

9

12

0 5000 10000 15000
Time

R
eg

io
ns

 D
is

co
ve

re
d Aggression

Fear

Figure 15: Average number of region objects known to vehicles over sim-
ulation time, for total 200 vehicles (100 “fear” type-2a and 100

“aggression” type-2b). The actual number of region objects em-
bedded in the environment is 2 for these experiments, adapted
from [10].

Figure 15 originates from work on Spatiotemporal Braitenberg ve-
hicles (SBVs), which are autonomous vehicles that are able to ex-
hibit increasingly complex spatial behaviors. This work produced
four classes of SBVs, the third of which was capable of identifying
objects such as spatial regions. It did so by constructing knowledge
of routes between places to build up knowledge about the neigh-
borhoods that connect known places. By additionally sensing which
places are a part of an object, this vehicle was able to determine the
number of objects in its environment.

Figure 15 shows an aggregate of 100 experimental runs with vehi-
cles with aggressive and fearful movement types navigating a region
with two objects. Initially, the vehicles have no knowledge of any re-
gion objects but as they navigate their environment and encounter
parts of the regions, their estimate of the total number of regions in-
creases rapidly past the actual number of regions. As the vehicles

36

continue, these initially separate regions merge. Over time, both vehi-
cle types tend towards accurate knowledge of the number of regions.

3.4 summary

Nodes in a geosensor network have the capability to capture envi-
ronmental data from sensors, to compute with this data using an on-
board microcontroller, and to communicate data using short-range
wireless communication. Algorithms featured in this research are de-
signed to operate on geosensor networks with the following capabili-
ties:

• Nodes may move;

• Nodes are uniquely identifiable (i.e., identifier function; id :
V →N);

• Nodes have no access to coordinate positioning information;

• Nodes are able to communicate with other nodes (i.e., commu-
nication graph G(t) = (V, E(t))) within a fixed distance, which
is considerably shorter than the span of the network;

• Nodes are aware of their current neighbors (i.e., neighbor func-
tion nbr : V × T → 2V); and

• Nodes’ sensors are able to detect whether they are currently
over a positive or negative region component (i.e., sensor func-
tion s : V × T → {0, 1}).

Algorithms are written according to the specifications developed
by Santoro [78], extended in [8] and then implemented using the Net-
Logo simulation environment [77]. Algorithms are then evaluated ac-
cording to scalability, veracity, and load balance.

37

4
S TAT I C R E G I O N S

This chapter presents three decentralized algorithms that are capable
of determining the internal structure of static regions and discover-
ing any qualitative relations that may be present. The first algorithm
describes the calculation of the containment relationships between
region components and the adjacency relations between Voronoi re-
gions of those components. The second algorithm introduces the sim-
plified maptree formal model and data structure for the storage of
both containment and Voronoi-adjacency relations for simple regions.
The third algorithm extends this to allow for complex regions.

4.1 basic data structure

By describing the internal structure of the region as a complex areal
object, the individual region components can be modeled as a series
of positive regions (islands) and negative regions (holes). The contain-
ment relations between these components can be described using a
containment tree [29], with the unbounded exterior region serving as
the root of the containment tree. This qualitative spatial relation be-
tween region components provides the notion of topological distance
from the exterior region. Figure 16 shows an example of how exterior
region 1 contains hole 2, which in turn contains islands 3, 4, 5, 6, and
island 3 contains holes 7 and 8.

In addition to the containment relation, the adjacency relation is
used to further describe the internal structure of the region. Like con-
tainment, adjacency describes a qualitative spatial relation between
region components. Typically, adjacency is used to describe a pair of
regions that directly border each other. For example, in Figure 16, the
positive region component 3 is adjacent to the negative region com-
ponents 2, 7, and 8. Looking at Figure 16’s containment tree, these
direct adjacency relations are all present as edges in the containment
tree, making their storage redundant.

Instead of these direct adjacency relations, the adjacency relations
of the Voronoi regions generated by the boundaries of region com-
ponents will be used. Specifically, the adjacency relations between
Voronoi regions enable refinements in the qualitative structure of a
complex areal object. For example, Figure 16 shows three different
configurations of a complex areal object that has identical contain-
ment trees.

These adjacency relationships between the Voronoi regions gener-
ated by the positive and negative region components (black and blue,

39

1

2

4 5

6

7

8

3

1

2

4

5

6

3

7

8

Region configuration a. Region configuration b.

1

2

4

5

6
3

7

8

1

2

3 4 5 6

7 8

Region configuration c. Containment tree.

Figure 16: Example complex areal objects with identical containment trees.
Positive region components are grey and negative region com-
ponents are white. Black lines and thick blue lines represent the
Voronoi boundaries induced by the positive and negative region
components respectively.

respectively) can be used to distinguish these configurations. For ex-
ample, the Voronoi region generated by positive region 4 has different
adjacency relationships in each of the three subfigures in Figure 16.
Combining the information from the containment tree and the adja-
cency relations of the Voronoi regions of positive region components
yields three different structures, summarized in Figure 17.

4.1.1 Qualitative relations

Looking at the combined structure in Figure 17, it can be seen that
regions 4, 5, and 6 exist in a different configuration for each of the
examples. With reference to Figure 16, it could be said intuitively that
region 4 is surrounded by regions 5 and 6 in Figure 16c, surrounded by
region 5 in 16b, and not surrounded by any region in 16a.

More precisely, consider a containment tree C. For a particular re-
gion component c ∈ C, level(c) is written to refer to its level in the con-
tainment tree. The root r of C is defined to be at level one, level(r) = 1.
Node level can be used to partition C into positive and negative nodes.
For example, assuming the root of the tree is a positive region (as in

40

1

2

3 4 5 6

7 8

1

2

3 4 5 6

7 8

1

2

3 4 5 6

7 8

Configuration a. Configuration b. Configuration c.

Figure 17: Combined containment tree and Voronoi-adjacency relations
of regions from Figure 16. Containment edges are black and
Voronoi-adjacency edges are blue and dashed.

Figure 16), then the set of positive nodes is {p ∈ C|level(p) is odd}.
Without loss of generality, assume R ⊂ C is the set of all positive re-
gion components in C. The set of Voronoi regions of the boundaries
of these region components is written V(R). The adjacency relation
on V(R) is then a symmetric relation A ⊆ V(R)×V(R). Finally, a dis-
tance function is defined δ : R× R → N+ on A, such that δ(c, c′) is
the length of the shortest path through A from c to c′ (i.e., δ(c, c′)→ 0
if c = c′; δ(c, c′) → 1 if (c, c′) ∈ A; δ(c, c′) → 2 if (c, c′′), (c′′, c′) ∈ A
and (c, c′) 6∈ A; and so forth). Using these functions, it is now possible
to define the surrounds relation as follows:

Definition Consider a region component c ∈ R such that for all
(c, c′) ∈ A, level(c) ≤ level(c′). Then, a region component s ∈ R is
said to partially surround c iff: a. (s, c) ∈ A; and b. for some r ∈ R such
that level(r) < level(s) then δ(s, r) = δ(c, r) − 1. Given the set of all
region components S that partially surround p, S surrounds p.

Informally, a region component s partially surrounds a region c
if c is Voronoi-adjacent to s, and s is closer to its containing region
component than c by exactly one step in the shortest path through
A. This surrounds relation provides the ability to discern more detail
about the configuration of complex areal objects, such as those in
Figure 16. It is contended that this relation also accords with human
intuition about “surrounding.”

This definition has similarities with Dube and Egenhofer’s 2014 pa-
per “Surrounds in Partitions” [11], in which surrounds is defined as
a topological relation between an inner region and an outer region
(or set of regions) that completely encircles the inner region. For this
relation to occur, the outer region requires a hole in which the inner
region is located. This requirement is in contrast to the contains rela-
tion from the 9-intersection model as the inner and outer regions do
not share an interior, as illustrated in Figure 18.

The paper presented four types of surrounds relations, with sur-
roundsAttach being the relation of interest to this work. The surround-

41

a. Surrounded by a
single region.

b. Surrounded by
multiple regions.

c. Contained by a sin-
gle region.

Figure 18: Example diagram showing the topological relations between
black striped inner and shaded grey outer regions discussed in
[11].

sAttach relation requires that the boundary of the inner and outer re-
gions are completely connected, i.e., the regions are attached. Apply-
ing this definition to Voronoi regions then produces the same result
as the surround relation presented in this work.

4.1.2 Algorithm design

With the definitions for containment, Voronoi-adjacency, and surrounds
relations in hand, the algorithms can now be implemented in pseu-
docode. The first algorithm will be referred to as the basicStatic al-
gorithm. For simplicity, this algorithm has been broken up into five
modules based on function, with the relations between these modules
shown in Figure 19. In brief, the five modules work as follows:

1. Region identification: Initialize the network using leader elec-
tion to select and distribute unique ids for each positive and
negative region component in the network.

2. Voronoi region identification: Using hop count flooding, de-
termine the approximate Voronoi boundaries between positive
region components and between negative region components.
Nodes store the hop count to each adjacent region component
in their boundary table (Bt), with Voronoi boundaries lying at
nodes where the hop counts from neighboring regions are equal.
As the nodes are mobile, this must be refreshed periodically.

3. Adjacency relation identification: Using surprise flooding, prop-
agate the Voronoi-adjacency relations to all nodes within a re-
gion component. Using the boundary table from module 2, nodes
that are on a Voronoi boundary will add this to their Voronoi-
adjacency table (At) and broadcast this adjacency pair.

4. Containment tree propagation: Using surprise flooding from a
node on the outermost region of the object, generate a segment

42

of the containment tree for each region (as parent and children)
as well as detect any surrounded regions and add them to the
surrounds table (St).

5. Node movement: Whenever a node moves to a different region,
have that node request information from neighbors in the new
region in order to keep the information obtained from modules
2–4 current.

3 42

0 1 0

1

2 3 4

Module 1 Module 2 Module 3 Module 4

Module 5 (accounting for node movement)

Sensor data

Figure 19: Flow diagram representing the interactions between the modules
that comprise the basicStatic algorithm.

4.1.3 Module 1: Region identification

The network is initialized using leader election [8, 78, 81] to select
a unique identifier for each (positive or negative) region component
in the network and to distribute that identifier to each node within
that region component. Each node begins by setting its node id as
its region id (rid), then broadcasting a lead message containing that
id along with its sensed value to its neighbors before transitioning
to the lead state (lines 5–7). Nodes receiving this message with the
same sensed value (i.e., nodes within the same region component)
will either set the received id as the new region id and rebroadcast
the message if the id is lower; or just rebroadcast the message if their
region id has been set to -1 (lines 10–15).

Upon completion, the lowest node id in each region component
will be set as the region id for every node within that region com-
ponent. Precisely when this will occur depends on the diameter of
the communication graph of the nodes that make up the region com-
ponent (i.e, the maximum number of relays it would take a message
sent from any node in the region component to reach any other node).
This value will be set as the value of the region timer and will dif-
fer depending on node density, communication distance, and region

43

configuration. When this region timer elapses, the nodes will then
transition to the regn state (lines 16–17). Because nodes running this
module are mobile, they may change regions before the region timer
has elapsed. When this occurs, the node sets its region id to -1 (Lines
8–9). This is to ensure that two adjacent regions are not assigned the
same region id.

Module 1 Region identification

1: Restrictions: reliable communication; connected, bidirected communica-
tion graph G(t) = (V, E(t)); neighborhood function nbr : V × T → 2V ;
sensor function s : V × T → {0, 1}

2: State transition system: 〈{init, lead, regn}, {(init, lead),
(lead, regn)}〉

3: Initialization: All nodes in state init

4: Local variables: region id rid : V → N ∪ {−1}, initialized to ˚rid := ˚id,
sensor function s : V → {0, 1}

init

5: Spontaneously
6: broadcast (lead, ˚id, s̊(now))
7: become lead

lead

8: When s̊(now) changes
9: set ˚rid := −1

10: Receiving (lead, rid′, s′)
11: if s′ = s̊(now) and rid′ < ˚rid then
12: set ˚rid := rid′

13: broadcast (lead, rid′, s′)
14: if s′ = s̊(now) and

˚rid = −1 then
15: broadcast (lead, rid′, s′)
16: When region timer elapsed
17: become regn

4.1.4 Module 2: Voronoi region generation

Module 2 uses hop-count flooding [8] to determine the approximate
Voronoi boundaries between positive region components and between
negative region components. Hop count flooding works by increment-
ing a number every time a message is passed on. By having nodes
on the boundaries of region component broadcasting these messages,
nodes that are the same amount of hops from two regions can be
said to be equidistant between these regions (i.e., on the boundary
between these Voronoi region components).

For a network with static nodes, it would be sufficient to send out
only one hop message to determine the boundary between Voronoi
regions. However, as the nodes within the network are mobile, any
Voronoi boundary they determine will become increasingly inaccu-
rate over time and therefore must be periodically refreshed. This
refresh interval is handled by the broadcast timer. When this timer

44

elapses, the timer will be reset, nodes will clear their boundary table
(Bt), and nodes with a valid rid will broadcast a hop message con-
taining their sensed value and rid along with a hop count of 1 (lines
2–6).

Nodes receiving a hop message will first check to see if the received
sensed value (s′) matches their own. Valid hop messages will either
have a differing sensed value and a hop count of 1 (i.e., the message
has come from the boundary of an adjacent region component) or
the same sensed value and hop count of greater than 1 (i.e, from the
same region component but not generated in that region) (lines 7–8).
If the node has not received a message from this region component
before (bid′), it will store the record in the boundary table (Bt) before
incrementing the hop count and rebroadcasting the message (lines 9–
11). Nodes that have received a message from this region component
before will update their record if the hop count is lower before incre-
menting the hop count and rebroadcasting the message (lines 12–15).
Lines 16–17 are related to node movement and will be discussed in
module 5.

Module 2 Voronoi region generation

1: Local variables: adjacent region id adj : V → N ∪ {−1}, initialized to
˚adj := −1, boundary table Bt = 〈bid : N, h : N〉, initialized with zero

records.

regn

2: When broadcast timer elapsed
3: Reset broadcast timer
4: delete from Bt
5: if ˚rid 6= −1 then
6: broadcast (hop, s̊(now), ˚rid, 1)
7: Receiving (hop, s′, bid′, h′)
8: if (s̊(now) 6= s′ and h′ = 1) or (s̊(now) = s′ and h′ > 1) then
9: if (count * from Bt where bid = bid′) = 0 then

10: insert into Bt values (bid′,h′)
11: broadcast (hop, s̊(now), bid′, (h′ + 1))
12: else
13: if h′ < h from Bt where bid = bid′ then
14: update Bt set h = h′ where bid = bid′

15: broadcast (hop, s̊(now), bid′, (h′ + 1))
16: if s̊(now) = s′ and

˚rid = −1 and h′ = 1 then
17: set ˚rid := bid′

18: Spontaneously (updating adjacent region id)
19: let MinHop := select min (h) from Bt
20: if (count (∗) from Bt where h = MinHop) > 1 then
21: set ˚adj := −1
22: else
23: set ˚adj := select bid from Bt where h = MinHop

The variable adj is used to store the id of the region component
of the Voronoi region the node is within. For nodes within negative

45

region components, this will mean the id of the closest positive region
component. For nodes within positive region components, this will
mean the id of the closest negative region component. This value is
selected from a record from the boundary table with the lowest hop
count (lines 18–19). Nodes with more than one record with the lowest
hop count (i.e., nodes that lay on a boundary between Voronoi region
components), set the value to -1 (lines 20–21) whereas nodes with a
single record will set the value to the id of that record (lines 22–23).

4.1.5 Module 3: Adjacency relation identification

Using surprise flooding, when the adjacency timer elapses module 3

propagates the Voronoi-adjacency relations to all nodes within a re-
gion component. For module 3 to work, this adjacency timer must
be set so that the module only runs after at least one round of mod-
ule 2 has run. Using the boundary table (Bt) from module 2, nodes
that have determined that they are on a boundary between adjacent
Voronoi regions (i.e., nodes with an adj value of -1) will add this
record to their Voronoi-adjacency table (At) and broadcast a bndy mes-
sage containing this adjacency pair along with their sensed value to
their neighbors (lines 3–5, 7–8). As module 3 is dependent on infor-
mation from module 2, module 2 needs to have been run at least once.
To ensure that this is the case the adjacency timer must be set accord-
ingly (line 2). Rarely, nodes will find themselves on the boundary
between three or more Voronoi region components. However, cases
such as these can safely be discarded as other adjacent nodes will be
sufficient to represent these boundary pairs (line 6).

Module 3 Adjacency graph propagation

1: Local variables: Voronoi-adjacency table At = 〈rida : N, ridb : N〉, ini-
tialized with zero records.

regn

2: When adjacency timer elapsed
3: if ˚adj = −1 then
4: let MinHop := select min (h) from Bt
5: let closest := select bid from Bt where h = MinHop
6: if |closest| = 2 then
7: insert into At values closest
8: broadcast (bndy, s̊(now), closest)
9: Receiving (bndy, s′, pair)

10: if s̊(now) = s′ and pair 6∈ At then
11: insert into At values pair
12: broadcast (bndy, s′, pair)

Nodes receiving a bndy message will check to see if they have the
same sensed value (i.e., within the same region) and will only proceed
if they do (lines 9–10). This is to ensure that adjacency relations are

46

kept within the region component that generated them. If this is the
case, and they have not already received or generated this adjacency
pair, they will add it to their Voronoi-adjacency table and rebroadcast
the message (lines 11–12).

4.1.6 Module 4: Containment tree generation

This module uses surprise flooding from a node on the outermost
region of the object to generate a segment of the containment tree
for each region (by populating the parent variable and children set) as
well as detect any surrounded regions and add them to the surrounds
table (St). For module 4 to work, this message must be injected after
module 3 has run. From modules 1 to 3, each node now knows the
id of the region component it is in (rid), the id of region components
adjacent to that component along with their relative distances (Bt),
and the Voronoi adjacencies of those region components (At).

Each node is then tasked with the generation of the local segment
of the containment tree (i.e., determining the region’s parent and chil-
dren regions) as well as any surrounds relations between these re-
gions. Recall that the rule for detecting surrounded regions is that a
region is considered surrounded if there exists no direct link in the
adjacency relations between it and the region higher in the contain-
ment tree. This illustrates the inherently decentralized nature of the
algorithm, as it is only nodes in regions between the surrounded and
surrounding region components that have all the information neces-
sary to compute the answer.

This module works by the broadcasting of a cont message contain-
ing the current region component’s parent (p′) and id (rid′). Nodes
will only process one of these messages if their parent value is null
and if the received parent id is different from the nodes region com-
ponent id (lines 2–3). The parent value must be null so that nodes
process only one valid cont message instead of indefinitely passing
the message back and forth between their neighbors. The received
parent id must not be the same as the node’s region component id
as there can be cases where the message may double back into a re-
gion that has already been partially processed. Figure 20 provides an
example of this.

Nodes receiving this message with the same rid will set their par-
ent value to that of the received message before rebroadcasting the
message (lines 4–6), whereas nodes with a different parent value (i.e.,
the message has entered a new region component) will set their par-
ent value as that of the received region component id before rebroad-
casting the message (lines 7–9). The nodes will then populate their
children set with any regions in their boundary table that are not the
parent node before detecting any surrounds relations (lines 10–11).

47

id: 1

p: -1

id: 4

p: ∅

id: 2

p: ∅

id: 3

p: ∅

id: 7

p: ∅

id: 5

p: ∅
id: 6

p: ∅

(-1,1)

(-1,1)

Region 3Region 1
id: 1

p: -1

id: 4

p: -1

id: 2

p: -1

id: 3

p: ∅

id: 7

p: ∅

id: 5

p: ∅
id: 6

p: ∅

(
-
1
,
1
)

(-1,1)

Region 3Region 1

a. Message injection at node 1,
passed to nodes 2 and 4.

b. Message passed to nodes 3 and
5.

id: 1

p: -1

id: 4

p: -1

id: 2

p: -1

id: 3

p: 1

id: 7

p: ∅

id: 5

p: -1

id: 6

p: ∅
(-1,1)

(1
,3
)

Region 3Region 1 Region 3Region 1
id: 1

p: -1

id: 4

p: -1

id: 2

p: -1

id: 3

p: 1

id: 7

p: 1

id: 5

p: -1

id: 6

p: -1

c. Message passed to nodes 6 and
7.

d. Node 7 has selected the incor-
rect parent.

Figure 20: Example showing how without a check that the received mes-
sage’s parent value is not equal to the node’s region component
id, Module 4 can cause nodes to select the incorrect parent.

To ensure that the containment tree will have the correct root, the
module begins with the injection of a cont message to a node on the
outermost component of the region with -1 set as the parent id. Using
the complex areal object in Figure 16c as an example, the module be-
gins with the injection of the message to a node in region component
1 of the form (cont, -1, 1). This message will allow all nodes in region
1 to select -1 as their parent (i.e., they have no parent as that region
component is the region’s exterior) and {2} as their children.

Once the message reaches region 2, the parent will be set to 1, the
children will be set to {3, 4, 5, 6}, and the message will change to
(cont, 1, 2). Using their knowledge of the containing region (parent)
and the Voronoi-adjacency relations (At), the nodes will then com-
pute the distance from the containing region to each of the children
and therefore detect that regions 5 and 6 surround region 4.

The message will further continue on to regions 3, 4, 5, and 6, with
these regions setting their parent to 2 and their children to {7, 8} for
3 and ∅ for 4, 5, and 6. Finally the message will reach regions 7 and
8 in the form (cont, 2, 3), with these regions setting their parent to 3

and their children to ∅.

48

Module 4 Containment tree generation

1: Local variables: parent : V → N ∪ {−1}, initialized to ˚parent := ∅;
children : V → 2N, initialized to ˚children := ∅, Surrounds table, St =
〈S : (set of surrounding regions), c : (surrounded region)〉, initialized
with zero records.

regn

2: Receiving (cont, p′, rid′)
3: if ˚parent = ∅ and p′ 6= ˚rid then
4: if ˚rid = rid′ then
5: set ˚parent := p′

6: broadcast (cont, p′, rid′)
7: else
8: set ˚parent := rid′

9: broadcast (cont, rid′, ˚rid)
10: set ˚children := select bid from Bt where bid 6= ˚parent
11: Detect any surrounds relations and insert into St

4.1.7 Module 5: Node movement

The final module is tasked with ensuring that nodes receive the cor-
rect values when entering a different region component, specifically
keeping the information obtained from modules 3 and 4 updated.
Whenever a node moves to a different region (i.e., their sensed value
changes) (line 1), it must perform four tasks.

Firstly, the region and Voronoi region component identifiers (rid
and adj) must be corrected. This is done by swapping them (lines 2–4).
Recall that the id of the Voronoi region component is also the id of the
node’s closest adjacent region so swapping these values will produce
the desired results. Occasionally, nodes will transition to a new region
component directly from a Voronoi region boundary (i.e, their adj
value before swapping is -1), causing their new region component id
to be set as -1. To correct for this, lines 15–16 were added to module 2

so that nodes with this value, on the receipt of a hop message from the
new region with a hop count of 1, will update their region component
id accordingly.

Secondly, the node’s other values must be cleared. This includes
the boundary, Voronoi-adjacency and surrounds tables (Bt, At, St) as
well as the parent and children variables (lines 5–6). Thirdly, if the
Voronoi region component id does not equal -1, the nodes will insert
a new record into their boundary table containing the Voronoi region
component id and a hop count of 1 (lines 7–8). This is done to ensure
that nodes that have just transitioned region components (and there-
fore have cleared their boundary tables) will have an accurate record
in their boundary table. Lastly, nodes will broadcast a rqst message
along with their sensed value to request the information cleared in
the second step from their neighbors (line 9).

49

Nodes receiving this request will respond if the received sensed
value matches the node’s own (i.e., the message is from a node in
the same region) and if the node has a non-empty Voronoi-adjacency
table (i.e., the node hasn’t also just transitioned and thus cleared its
variables). The node will then respond by sending a rspc message
along with its sensed value, Voronoi-adjacency and surrounds tables
as well as its parent and children variables (lines 10–12).

Nodes receiving this response will again check to see that the re-
ceived sensed value matches the node’s own (lines 13–14). This is nec-
essary for cases where there is both an arrival and departure of nodes
from a region component in close proximity (e.g., nodes moving from
region component 1 to 2 as well as from 2 to 1) as nodes could be up-
dated with records from the wrong region component. If the message
is from the same region component and the Voronoi-adjacency table
is empty, then it will be filled using records from the received mes-
sage (lines 15–16). If the parent variable is set to null, then both the
parent and children variables, along with the surrounds table, will
be updated with corresponding records from the received message
(lines 17–20).

Module 5 Node movement

regn

1: When s̊(now) changes
2: let tmp := ˚rid
3: set ˚rid := ˚adj
4: set ˚adj := tmp
5: delete from Bt, At, St
6: set ˚parent, ˚children := ∅
7: if ˚adj 6= −1 then
8: insert into Bt values (˚adj, 1)
9: broadcast (rqst, s̊(now))

10: Receiving (rqst, s′)
11: if s̊(now) = s′ and At 6= ∅ then
12: broadcast (rspc, s̊(now), At, ˚parent, ˚children, St)
13: Receiving (rspc, s′, A′t, parent′, children′, S′t)
14: if s̊(now) = s′ then
15: if At = ∅ then
16: set At := A′t
17: if ˚parent = ∅ then
18: set ˚parent := parent′

19: set ˚children := children′

20: set St := S′t

The reason that the Voronoi-adjacency table updating has been sep-
arated from the updating of the other records is that there are occa-
sionally cases where a node has entered a new region and then re-
ceived and processed a cont message (i.e., assigned itself parent and
children variables along with populating its surrounds table) but has

50

not yet received a rspc message. If it were to receive a rspc message
from a node that has not yet processed its own cont message (i.e., not
yet assigned itself parent and children variables or populated its sur-
rounds table), then updating all of these values would erase its parent
and children variables along with any surrounds table records.

4.1.8 Algorithm summary

With these five modules, a complete decentralized algorithm is pro-
duced that is capable of extracting high level knowledge from low
level sensor data provided by individual nodes in the network. Ad-
ditionally, the algorithm does this without access to the coordinate
information of the nodes while accommodating node mobility.

That is not to say that the algorithm is without drawbacks. Specif-
ically, nodes within a region component are only aware of the re-
gion component containing them and any region components they
contain. This lack of a complete picture of the internal structure of
the network may be adequate for some cases, such as detecting any
surrounds relations. However on other occasions, it may be that the
entire containment tree and Voronoi-adjacency graph is required. To
build this containment tree and Voronoi-adjacency graph, informa-
tion from each of the region components would need to be retrieved.

Additionally, this algorithm stores the containment tree and Voronoi-
adjacency relations separately. The containment tree segments are
stored as parent and children variables for each region component
whereas the Voronoi-adjacency relations are stored in the Voronoi-
adjacency table (At), which is also confined to a single region compo-
nent.

4.2 simplified maptree for simple regions

As mentioned in the previous section, using a containment tree over-
lain with the Voronoi-adjacency relations is suitable for detecting sur-
rounds at a local level. However, the drawbacks of having the infor-
mation required stored in segments throughout the entire network as
well as in two separate formal models is inefficient. What is required
is a single formal model and corresponding data structure that is ca-
pable of efficiently storing containment and Voronoi-adjacency. For
these reasons, the maptree (introduced in section 2.2) was chosen.
As previously stated, the maptree is a black-white edge labeled tree
based on combinatorial maps and adjacency trees capable of com-
pletely representing the topological structure of regions. Additionally,
it was demonstrated in section 2.2.1 that it is possible to construct a
maptree based on a DCEL table, provided that the table is first pro-
cessed to split the halfedges into arbitrarily named connected compo-
nents.

51

0

2 1 3 4

8765

M3 M2

M1

abcd

b̅g̅he̅d̅j a̅efg c̅ȷ̅ f̅h̅

i

ı̅

klm

m̅p̅n̅k̅no l̅o̅p

0

2 1 3 4

8765

M3 M2

M1

1232

014103 0242 02 12

5

2

678

376387 368

0

2 1 3 4

8765

M3 M2

M1

123

0134 024 02 12

5

2

678

367378 368

Figure 21: Maptrees: a. Standard maptree, derived from DCEL; b. Partially
simplified maptree (with preserved boundary cycle); and c. Sim-
plified maptree.

Of note in Figure 21.a is that the maptree has a defined root con-
sisting of the region component 0. Maptrees represent the relative
relationships between the regions and components, meaning that for
a particular planar embedding to be specified, a root node must be se-
lected. This root node is the unbounded exterior of the region, which
in Figure 22, is region component 0. Selecting this node will allow
for topological relationships to be inferred correctly. It is important
to note that DCEL tables, such as the one presented in table 2, must
also specify the root node. This has been done using the first record
by selecting -1 for all columns other than face.

M1

M2
M3

1

0

2

4
5

3

6 7

8

012

124

012

023

023

368
678

367

378

124

a

b c

g

f h

e

i k
o
n

p
m

l

j

d

Figure 22: Simple region example with all edges labeled. Region compo-
nents are grey and black lines represent the Voronoi boundaries
of those region components. Black dots represent the Voronoi
junctions.

For simplicity, this section will only cover simple regions, which
contain only a single hole (i.e, the containment tree has a maximum
diameter of three). Consider the example case of the simple static
regions provided in Figure 22. It is possible to construct a maptree
from the Voronoi-adjacency relations given that each edge has both

52

a label and an orientation, as shown by Figure 21.a, or from a DCEL
table containing these edges (table 2).

Halfedge Twin Next Previous Face Component

-1 -1 -1 -1 0 -1

a a b d 0 M1

a a e g 1 M1

b b c a 1 M1

b b g j 2 M1

i i i i 2 M3

i i i i 5 M3

...
...

...
...

...
...

Table 2: DCEL table augmented with connected component labeling. Table
shows some entries for Figure 22. The completed table can be found
in the appendices as Table 14.

Given that the algorithms used to detect the Voronoi boundaries
only specify whether a boundary is present between two Voronoi
region components, unique edge identification is not possible. For ex-
ample, the edges b and d from Figure 22 would be represented by the
single entry {0, 2} in the Voronoi adjacency table At. Because these
edges cannot be uniquely represented, boundary cycling of the edges
(i.e., the order of edges that surround a face) is also not possible.

As unique edge identification is not possible, the formal model will
need to be simplified so that only the region components adjacent
to the boundary cycle of another region component are listed in the
maptree edges. As each halfedge has a region its twin is adjacent to, a
mapping function can be defined to replace halfedges with their asso-
ciated region. This mapping is defined with the simplify function; i.e.,
simplify: halfedge→ face. The result of applying this to the maptree in
Figure 21.a. is shown in Figure 21.b. At this stage, Voronoi-adjacency
boundaries are no longer uniquely represented as edges although
boundary cycling is still preserved. This can be further simplified by
removing duplicate entries, creating a simplified maptree as shown
in Figure 21.c. At this point boundary cycling is no longer preserved.

4.2.1 Simplified maptree table

While it has been demonstrated that it is possible to construct a map-
tree from a DCEL table and to convert a regular maptree to a sim-
plified one, it is also possible to simplify a DCEL table to store only
information required to construct a simplified maptree. Most of this
simplification comes from the fact that boundary cycling is not pre-

53

served (eliminating the previous and next columns) and halfedge la-
beling is not required (eliminating the halfedge and twin columns).

It is however not sufficient to simply store the unique entries of the
face and component columns as this would only preserve the maptree
edges and not their edge labels. To preserve the edge labels, a triple
consisting of two faces and a connected component must be stored,
indicating that these two Voronoi region components are adjacent to
each other through a specific connected component. This can be done
by taking the face and connected component of one half edge and
pairing it with the face of its twin.

For example, in table 2 the halfedge a is part of connected com-
ponent M1 and faces Voronoi region component 0 whereas its twin
a faces region component 1. This would create the triple 〈0, 1, M1〉,
which can be confirmed visually by looking at Figure 22. To convert
these triples into a maptree, the edge (0, M1) would be added along
with a label of 1. Additionally, the inverse edge (1, M1) would be
added with a label of 0. As seen in table 3, by processing all of these
triples, the entire simplified maptree can be constructed.

rida ridb cid

-1 0 -1

0 1 M1

0 2 M1

1 2 M1

2 5 M3

...
...

...

Table 3: Simplified maptree table based on Table 2. The completed table can
be found in the appendices as Table 15.

4.2.2 Qualitative relations

Like Figure 16 from the previous section, Figure 22 also illustrates
regions on the same level of the containment tree that exist in dif-
ferent configurations. Again, it can be intuitively said that region
component 4 is surrounded by region components 1 and 2, region
component 5 is surrounded by region component 2, and that region
components 6, 7, and 8 are surrounded by region component 3. Look-
ing at the simplified maptree in Figure 21, while region component
5 and region components 6, 7 and 8 are both surrounded by a single
region component and are two levels lower on the simplified map-
tree than their surrounding region components, region component 4

is at the same level as its surrounding region components. It is this
distinction that requires the splitting of the surrounds definition into
engulfs for when a single region component partially encloses another

54

region component and surrounds when multiple region components
partially enclose another region component.

More formally, consider a simplified maptree M, with the set of
black nodes B representing the connected components of the simpli-
fied maptree and the set of white nodes W representing the set of
Voronoi region components. For a particular Voronoi region compo-
nent x ∈ B∪W, level(x) is written to refer to its level in the simplified
maptree; i.e., level: B ∪W →N.

Because the Voronoi region components are induced by region com-
ponents, there is a 1:1 mapping between them. This is defined with
the gen function. In other words, gen(w) or gen(W) are the regions
that generate white nodes w or W. Voronoi regions that share a con-
nected component with a specified region component are then de-
termined using the abut function. These are the region components
that are Voronoi-adjacent to that region component with respect to
the specified boundary and are written on the edges of the simplified
maptree; i.e., abut: B×W → 2W . With this, the surrounds and engulfs
relations can be defined as follows:

Definition Consider Voronoi region components w1, w2 ∈ W such
that level(w1) < level(w2) and there exists a b ∈ B where bw1, bw2 ∈
M. If w1 6∈ abut(b, w2) then gen(abut(b, w2)) is said to surround gen(w2)

Definition Let w1, w2 ∈ W such that level(w1) < level(w2) and there
exists a b ∈ B where bw1, bw2 ∈ M. Then gen(w1) engulfs gen(w2)

Informally, a region component c is surrounded by regions S if c is
Voronoi-adjacent to all of S, and both c and all of S are at the same
level in the simplified maptree. Additionally, a region component c is
engulfed by region s if s is exactly two levels higher in the simplified
maptree. With this, it is now possible to both store the simplified
maptree as well as calculate the surrounds and engulfs relations for
simple regions.

4.2.3 Algorithm design

In implementing this new formal model, some aspects of the original
algorithm must be changed. While the original algorithm is capable of
handling complex region configurations (i.e., multiple nested positive
and negative region components), for simplicity’s sake the algorithm
of this section will only be capable of functioning on simple region
configurations. As such the algorithm will in practice only ever detect
a single negative region component. In the new algorithm, modules
1 and 2 will remain unchanged, with the algorithm still selecting and
distributing unique ids for each (positive or negative) region compo-
nent in the network and determining the approximate Voronoi bound-
aries between region components. This algorithm will be referred to

55

as the simpleStatic algorithm, and the relations between the modified
modules can be seen in Figure 23.

Module 3a Module 4a

Module 5a (accounting for node movement)

Sensor data

0

a

2 3 4

234

034 0232 4
3 42

0 1

a

Module 1 Module 2

Figure 23: Flow diagram representing the interactions between the modules
that comprise the simpleStatic algorithm.

Broadly speaking, the new modules must be able to do the follow-
ing three things in order to make use of the simplified maptree:

1. Detect Voronoi-adjacency relations,

2. Break them up into connected components, and

3. Store the simplified maptree components in a table of the form
(region component id a, region component id b, connected component
id).

Using Figure 22 as an example, the original module 3 is already ca-
pable of storing the Voronoi-adjacency relations in its Voronoi-adjacency
table (At). To break these sets of relations into a set of connected
components, Voronoi-adjacency junctions will also have to be stored.
These junctions are points where three Voronoi region components
directly abut each other and can be detected by minor modifications
to the module.

Using the Voronoi-adjacency junctions, module 4 will split the re-
gions into connected components (shown as black lines in Figure 22).
This is done by grouping junctions that share two regions with at least
one other member in the group. For example, (0, 1, 2), (0, 2, 3), and
(1, 2, 4) are all connected as they share two values between at least one
other member. This gives us the connected components {0, 1, 2, 3, 4}
and {3, 6, 7, 8}, which have been given the arbitrary names M1 and
M2.

From the diagram, it can be seen that there are actually 3 connected
components, with the middle one not being registered. This is be-
cause it has no Voronoi-adjacency junction associated with it. To cor-
rect for this, a search of the Voronoi-adjacency pairs must be made for

56

pairs where one of the regions is not present in any of the connected
components. In this case, it would be the pair 25, which can be added
as M3: {2, 5}.

To store the simplified maptree records, all that is needed is to add
an additional column to the Voronoi-adjacency table, populating it
with the id of the associated connected component. For adjacency
relation (0,1) this would involve finding which connected component
contains both region component ids. In this case, that would be M1,
creating the entry (0,1,M1).

The detection of the surrounds and engulfs relations both rely on a
level function, which returns the distance a specified node is from the
root of the simplified maptree. For this to work, the id of the root re-
gion component (i.e, the exterior of the region) must be known. This
can be done by either having a node on the outermost region com-
ponent of the region configuration use surprise flooding to distribute
the root node id throughout the network, or for the network to simply
be initialized knowing the root (i.e., the exterior region component
has a specific id).

To explain the specifics of implementing this model, the following
sections, which include a description of the modified modules and
their pseudocode, have been provided.

4.2.4 Module 3a: Modified adjacency relation identification

Like the original module, surprise flooding is used to propagate the
Voronoi-adjacency relations to all nodes within a region component,
although this information is now stored within the simplified map-
tree table (Mt) instead of the Voronoi-adjacency table (At). Unlike the
Voronoi-adjacency table, the simplified maptree table has a third col-
umn for storing the id of the connected component that relation is a
part of. As this id is assigned by the next module, this column can
be ignored here. This module has been additionally modified to de-
tect and propagate Voronoi-junctions, which are points where three
Voronoi region components directly abut each other.

As in the original module, nodes on a boundary between adjacent
Voronoi regions (i.e, nodes with an adj value of -1) will create a set of
the region components that make up this boundary (lines 2–5). Nodes
on a boundary between two Voronoi region components will add this
record to their simplified maptree table (Mt) and broadcast boundary
and junction request messages (bndy and junq) to their neighbors
(lines 6–9).

Nodes on the boundary between three Voronoi region components
will insert these values into their Voronoi-junction table (Jt) and broad-
cast a junction found message (junf) containing this adjacency triple
along with their sensed value to their neighbors (lines 10–12).

57

Nodes receiving a junction request message (junq) will check to
see if they have the same sensed value (i.e., within the same region),
and that their adj value is not a member of the received pair and is
not -1 (i.e., the node is not on a Voronoi region component bound-
ary). Nodes capable of meeting these requirements would be nodes
in one Voronoi region component with neighbors on the boundary of
two other Voronoi region components. Using Figure 24, the Voronoi-
adjacency junction would be {1, 2, 3} (lines 17–18).

Region 1
Region 2

Region 3

Figure 24: Adjacency example where no node is on the boundary between
the three Voronoi region components. Nodes capable of detecting
the junction {1, 2, 3} by communicating with their neighbors are
shaded black.

These nodes will then aggregate the ids of these three Voronoi re-
gion components into a junction set before broadcasting it to their
neighbors in a junction found message along with their sensed value.
The junction will then be added to the node’s Voronoi-junction table
if it is not already present (lines 19–22).

Nodes receiving a boundary (bndy) or junction found (junf) mes-
sage will check to see that they haven’t stored the received entry yet.
If this is the case, they will add it to the corresponding table before
rebroadcasting the message (lines 13-16, 23–26). Unlike the original
module, these messages require no sensed value check, meaning that
on completion of this module, all records for the simplified maptree
table and Voronoi-junction table will be stored in each node of the
network.

58

Module 3a Modified adjacency graph propagation

1: Local variables: Simplified maptree table, Mt = 〈rida : N, ridb : N, cid :
N〉, initialized with record (−1, root,−1) where root is the id of the re-
gion component comprising the exterior of the region, Voronoi-junction
table Jt = 〈rida : N, ridb : N, ridc : N〉, initialized with zero records.

regn

2: When adjacency timer elapsed
3: if ˚adj = −1 then
4: let MinHop := select min (h) from Bt
5: let closest := select bid from Bt where h = MinHop
6: if |closest| = 2 then
7: insert into Mt values closest
8: broadcast (bndy, closest)
9: broadcast (junq, s̊(now), closest)

10: if |closest| = 3 then
11: insert into Jt values closest
12: broadcast (junf, closest)
13: Receiving (bndy, pair)
14: if pair 6∈ Mt then
15: insert into Mt values pair
16: broadcast (bndy, pair)
17: Receiving (junq, s′, pair)
18: if s̊(now) = s′ and adj 6∈ pair and adj 6= −1 then
19: let junction := pair∪ adj
20: if junction 6∈ Jt then
21: broadcast (junf, junction)
22: insert into Jt values junction
23: Receiving (junf, Jt)
24: if junction 6∈ Jt then
25: insert into Jt values junction
26: broadcast (junf, junction)

4.2.5 Module 4a: Simplified maptree generation

Now that each node has the complete set of Voronoi-adjacency re-
lations and Voronoi-adjacency junctions stored in their respective ta-
bles, once the maptree timer elapses, module 4 will assign connected
components to each entry in the simplified maptree table. This timer
is set to elapse at a set period after the adjacency timer so that every
node has the complete set of information necessary to construct the
simplified maptree.

First, each entry in the Voronoi-junction table (Jt) is added as a
set to the collection components (Line 3). Each set is then compared
with every other set to see if they share at least two region compo-
nents in common (Lines 4–6). If this is the case, these sets are merged
together (Line 7). Once completed, the example region from figure
22 would produce the following collection of connected components:
{{0, 1, 2, 3, 4}, {3, 6, 7, 8}}.

59

However, some connected components have no junctions within
themselves, meaning that they are comprised of a single Voronoi-
adjacency pair. To correct for this, all region components present
within the simplified maptree table that are not already present in the
components collection are added to the remaining set (Line 8). Records
from the simplified maptree table that match one of these region
components are then added to the components collection (Lines 9–10).
This would make the example collection of connected components:
{{0, 1, 2, 3, 4}, {3, 6, 7, 8}, {2, 5}}.

Lastly, every entry of the simplified maptree table is sorted through
to find each region’s associated connected component (Lines 11–12).
This will be the connected component that contains both region com-
ponent ids from the simplified maptree table’s entry (Line 13). This
record’s cid field will then be updated with the label of the connected
component (Line 14). This label is obtained using the clabel function,
which determines a unique id for a set of region component ids.

Once the simplified maptree table has been completed, it can, along
with the root node, be used to determine any surrounds or engulfs
relations.

Module 4a Simplified maptree generation

1: Restrictions: component labeling function: clabel(c) → N where N is a
unique id for that set of region components.

regn

2: When maptree timer elapsed
3: let components := collection of sets derived from entries from Jt
4: for all i ∈ components do
5: for all j ∈ components do
6: if |i ∩ j| ≥ 2 then
7: merge (i, j)
8: let remaining := set of all unique region ids from Mt not present in

components
9: for all k ∈ remaining do

10: let components := components ∪ {select rida, ridb from Mt where

rida = k or ridb = k}
11: for all l ∈ Mt do
12: for all m ∈ components do
13: if {l} ⊆ m then
14: update l set cid = clabel(m)

4.2.6 Module 5a: Modified node movement

As the algorithm only has to contend with simple regions, this mod-
ule has been greatly simplified from its original form. As each node
has the same entries for the simplified maptree table and Voronoi-
junction table, these do not need to be refreshed when a node enters
a new region. Because of this, only the boundary table (Bt) needs to

60

be refreshed (Lines 5–7), and the region component and Voronoi re-
gion component id’s need to be updated, which is done by swapping
them (Lines 1–4).

Module 5a Modified node movement

regn

1: When s̊(now) changes
2: let tmp := ˚rid
3: set ˚rid := ˚adj
4: set ˚adj := tmp
5: delete from Bt
6: if ˚adj 6= −1 then
7: insert into Bt values (˚adj, 1)

4.3 simplified maptree for complex regions

While the algorithms of the previous section are sufficient for deter-
mining the simplified maptree for simple regions, additional modifi-
cations will be required to accurately describe the simplified maptrees
in complex areal objects, an example of which is shown in Figure 25.
In contrast to the simple region example of Figure 22, this complex re-
gion example has two sets of Voronoi-adjacency boundaries, induced
by the positive and the negative region components respectively.

0

1

2

8

5

b

d
3

6

c

7

4

e

9

a

Figure 25: Complex regions example. Positive region components are grey
and negative region components are white. Black lines represent
the Voronoi boundaries induced by positive region components
and blue, thick lines represent the Voronoi boundaries induced
by negative region components.

4.3.1 Qualitative relations

Like the simple region example, these two sets of Voronoi-adjacency
boundaries can be collected into simplified maptrees, as shown in Fig-

61

ure 26. Formally, M+ and M− will refer to the simplified maptrees
of the positive and negative region components respectively. Addi-
tionally, B+, W+, B−, and W− will refer to the sets of black and white
nodes for the simplified maptrees of the positive and negative region
components. These can be aggregated to represent the entire set of
black and white nodes; i.e., B = B+ ∪ B− and W = W+ ∪W−.

6

c

6

3

0

2 3 4 7

5

b

a

234

03 024 037 34

5

2

1

d e

9

1

8

1

98

Figure 26: Simplified maptree example based on complex region from Fig-
ure 25. Simplified maptree induced by the positive region com-
ponents (M+) on left and simplified maptree induced by the neg-
ative region components (M−) on right. The simplified maptree
table can be found in table 16 of the appendix.

Like the simple region example, the complex region example illus-
trates both the surrounds and engulfs relations. In both the region
configuration (Figure 25) and the positive simplified maptree (Figure
26), the positive region component 7 is surrounded by region com-
ponents 3 and 4 whereas region component 6 is engulfed by region
component 3. Judging by the positive simplified maptree it appears
that region component 5 is engulfed by region 2. However, looking at
the region configuration in Figure 25, it is clear that region component
5 is in fact contained by region 2. Writing this as a formal definition
for detecting engulf and contain relations in the positive simplified
maptree is as follows:

Definition Let w1, w2 ∈W+ such that level(w1) < level(w2) and there
exists a b ∈ B+ where bw1, bw2 ∈ M+. Then gen(w1) engulfs or con-
tains gen(w2)

In order to distinguish between engulf and contain relations, in-
formation is additionally required from the opposite simplified map-
tree. Specifically, each connected component is contained within the
Voronoi region component of its opposite simplified maptree. This
relationship is defined by the label function, i.e., B+ → W−. An ex-
ample output of this function for the object in Figure 25 is presented
in Table 4.

62

Input Output

a 1

b 8

c 1

d 2

e 4

Table 4: Table of results of label function for connected components of Figure
25.

From this table it can be seen that connected components a and
c are within the same region component and that connected compo-
nents a and b are not. It is this difference that allows for a formal
definition of the distinction between engulfs and contains:

Definition Consider w1, w2 ∈ W+ where gen(w1) engulfs or contains
gen(w2). If there exists b1, b2 ∈ B+ where b1w1, w1b2, b2w2 ∈ M+ and
label(b1) = label(b2) then gen(w1) engulfs gen(w2). Otherwise gen(w1)

contains gen(w2).

With this, it is now possible to store the simplified maptree for
both positive and negative region components as well as calculate
surrounds, engulfs and contains relations for complex regions.

4.3.2 Algorithm design

To extend the algorithm designed in the previous section so that it is
capable of working with complex regions, some key changes must be
made. Specifically, a table must be added similar to Table 4 to store
the region components the connected components reside within. This
is for the label function to be able to distinguish between engulfs and
contains relations. Additionally, a new column must be added to the
simplified maptree table (Mt) in order to distinguish entries that are
part of the positive and negative simplified maptrees. This algorithm
will be referred to as the complexStatic algorithm, and the relations
between the modified modules are identical to those shown for the
simpleStatic algorithm in Figure 23.

To explain the specifics of implementing this model, the following
sections, which include a description of the modified modules and
their pseudocode, have been provided.

4.3.3 Module 3b: Modified adjacency relation identification for complex
regions

Module 3 runs in essentially the same way as its counterpart from
the previous section with the exception that the simplified maptree

63

and Voronoi-Junction tables (Mt and Jt) are restricted to the region
components that calculated them. Additionally, the simplified map-
tree table has a neg column to indicate whether the entry is part of
the positive maptree or negative maptree, with 1 indicating that the
entry is part of the negative simplified maptree and 0 indicating that
the entry is part of the positive simplified maptree.

Module 3b Modified adjacency graph propagation for complex re-
gions

1: Local variables: Simplified maptree table, Mt = 〈rida : N, ridb : N,
cid : N, neg : {0, 1}〉, initialized with record (−1, root,−1, 0) where root
is the id of the region component comprising the exterior of the region,
Voronoi-junction table Jt = 〈rida : N, ridb : N, ridc : N〉, initialized with
zero records.

regn

2: When adjacency timer elapsed
3: if ˚adj = −1 then
4: let MinHop := select min (h) from Bt
5: let closest := select bid from Bt where h = MinHop
6: if |closest| = 2 then
7: insert into Mt values closest
8: broadcast (bndy, s̊(now), closest)
9: broadcast (junq, s̊(now), closest)

10: if |closest| = 3 then
11: insert into Jt values closest
12: broadcast (junf, s̊(now), closest)
13: Receiving (bndy, s′, pair)
14: if s̊(now) = s′ and pair 6∈ Mt then
15: insert into Mt values closest
16: broadcast (bndy, s̊(now), pair)
17: Receiving (junq, s′, pair)
18: if s̊(now) = s′ and adj 6∈ pair and adj 6= −1 then
19: let junction := pair∪ adj
20: if junction 6∈ Jt then
21: broadcast (junf, s̊(now), junction)
22: insert into Jt values junction
23: Receiving (junf, s′, Jt)
24: if s̊(now) = s′ and junction 6∈ Jt then
25: insert into Jt values junction
26: broadcast (junf, s̊(now), junction)

4.3.4 Module 4b: Simplified maptree generation for complex regions

Now that each node has the set of Voronoi-adjacency relations and
Voronoi-adjacency junctions detected by the region component they
are presently in stored in their respective tables, module 4 will once
again assign connected components to each entry in the simplified
maptree table. This works almost identically to the module from the
previous section; where this module differs is that once this is com-

64

plete, the simplified maptree table then fills its neg column with its
sensed value (Line 16). Recall that a sensed value of 0 or 1 indicates
that the node is within a negative or positive region component re-
spectively. Directly adding the sensed value works as nodes in neg-
ative region components detect segments of positive simplified map-
trees (M+), and nodes in positive region components detect segments
of negative simplified maptrees (M−).

In order to distinguish between engulf and contain relations, the
label function is required. To implement this, the label table (Lt) was
added to store the ids of the connected components and the ids of
region components they reside within. As all the connected compo-
nents presently stored within a node have originated from that node’s
current region component, this table can be populated with these
records and the region component id, rid (Lines 17–18).

Module 4b Simplified maptree generation for complex regions

1: Local variables: label table Lt = 〈cid : N, rid : N〉, initialized with zero
records.

2: Restrictions: component labeling function: clabel(c) → N where N is a
unique id for that set of region components.

regn

3: When maptree timer elapsed
4: let components := collection of sets derived from entries from Jt
5: for all i ∈ components do
6: for all j ∈ components do
7: if |i ∩ j| ≥ 2 then
8: merge (i, j)
9: let remaining := set of all unique region ids from Mt not present in

components
10: for all k ∈ remaining do
11: let components := components ∪ {select rida, ridb from Mt where

rida = k or ridb = k}
12: for all l ∈ Mt do
13: for all m ∈ components do
14: if {l} ⊆ m then
15: update l set cid = clabel(m)
16: update Mt set neg = s̊(now) where neg = ∅
17: for all n ∈ components do
18: insert into Lt values {clabel(n), ˚rid}
19: broadcast (mapt, Mt, Lt)
20: Receiving (mapt, M′t, L′t)
21: if M′t 6⊆ Mt then
22: insert into Mt values M′t
23: insert into Lt values L′t
24: broadcast (mapt, M′t, L′t)

As each node is restricted to entries in the simplified maptree and
label table, which have originated from that node’s current region
component, surprise flooding will be used to propagate these entries

65

throughout the network (Lines 19–24). This will ensure that upon
the completion of this module, every node will have access to the
information necessary to determine the presence of any surrounds,
contains or engulfs relations.

4.3.5 Module 5b: Modified node movement for complex regions

As the algorithm only now has to account for complex regions, this
module has been expanded on. Specifically, when a node changes
region components, if module 4 has not yet run (i.e., the label table
has no records), then the simplified maptree table and junction table
will have to be cleared and replaced with new records requested from
the node’s new neighbors (lines 8–10).

Nodes receiving this request will respond if the received sensed
value matches the node’s own (i.e., the message is from a node in
the same region), and if the node has a non-empty simplified map-
tree table (i.e., the node hasn’t also just transitioned and thus cleared
its variables). The node will then respond by sending a response
message along with its sensed value, simplified maptree table, and
Voronoi-junction table (lines 11-13).

Module 5b Modified node movement

regn

1: When s̊(now) changes
2: let tmp := ˚rid
3: set ˚rid := ˚adj
4: set ˚adj := tmp
5: delete from Bt
6: if ˚adj 6= −1 then
7: insert into Bt values (˚adj, 1)
8: if Lt = ∅ then
9: delete from Mt, Jt

10: broadcast (rqst, s̊(now))
11: Receiving (rqst, s′)
12: if s̊(now) = s′ and |Mt| > 1 then
13: broadcast (rspc, s̊(now), Mt, Jt)
14: Receiving (rspc, s′, M′t, J′t)
15: if s̊(now) = s′ and Mt = ∅ then
16: set Mt := M′t
17: set Jt := J′t

Nodes receiving this response will again check to see that the re-
ceived sensed value matches the node’s own. This is necessary for
cases where there is both an arrival and departure of nodes from a
region component in close proximity (e.g., nodes moving from region
component 1 to 2 as well as from 2 to 1) as nodes could be updated
with records from the wrong region component. If the message is
from the same region component and the simplified maptree table is

66

empty, then it will be filled using records from the received message
(lines 14–18).

4.4 summary

This chapter presents three decentralized algorithms that are capable
of determining the internal structure of static regions and discovering
any qualitative relations that may be present. This is all done without
reference to location and while the nodes making up this network are
mobile. While these algorithms are all capable of extracting high level
knowledge from low level sensor data provided by individual nodes
in the network, there are some key differences between them:

• The first algorithm is capable of running on complex regions
and describes the calculation of both the containment relation-
ships between region components and the adjacency relations
between Voronoi regions of those components. By combining
these Voronoi adjacency relations with the containment tree,
this algorithm is capable of detecting the presence of any sur-
rounds relations, where one or more regions partially enclose
another.

• The second algorithm is only capable of running on simple re-
gions and introduces the simplified maptree for the storage of
the adjacency relations of the Voronoi regions induced by the re-
gion components. This algorithm splits the surrounds relation
into engulfs, for when a single region partially encloses another
region, and surrounds, when multiple regions partially enclose
another region.

• The third algorithm extends the second so that it may addition-
ally run on complex regions. It does so by splitting the simpli-
fied maptree into two maptrees; the positive simplified maptree
for relations induced by the positive region components and
the negative simplified maptree for the relations induced by the
negative region components. In addition to being able to de-
tect surrounds and engulfs relations, by combining information
from the two simplified maptrees, this algorithm is able to fur-
ther distinguish between engulfs and contains relations.

Chapter 6 will then evaluate these algorithms in terms of scalability
and veracity.

67

5
D Y N A M I C R E G I O N S

While the previous chapter presented algorithms capable of deter-
mining the internal structure of static regions and discovering any
qualitative relations present, these algorithms all had the limitation
that the underlying regions be static. This chapter presents two sets
of decentralized algorithms that are capable of additionally handling
dynamic regions. The first algorithm extends the algorithm of section
4.2, which deals with simple regions, and the second algorithm ex-
tends the algorithm of section 4.3, which deals with complex regions.

As dynamic regions are now being considered, it is important to
first define the specifics of what changes are possible by the region.
While this has been discussed in more detail in section 2.1.3, the key
points will be restated here. For simple region configurations, the
topological events of components splitting, merging, appearing, and
disappearing are all possible. For the sake of simplicity, region compo-
nents can split into at most two components and a maximum of two
region components can merge. Additionally, these topological events
will be treated as atomic, with at most one topological event occur-
ring during a single time step. By extending this to complex regions,
the events self-split and self-merge are additionally possible.

5.1 simple regions

As the modifications necessary to extend the algorithms from the pre-
vious chapter to work with dynamic region configurations are exten-
sive, simple regions will be considered to start with. As mentioned in
section 4.2, simple regions contain only a single hole (i.e, the contain-
ment tree has a maximum diameter of three). The following section
will further expand upon these extensions, allowing for complex re-
gions to be monitored. To extend the algorithm from section 4.2, the
new modules must be able to do the following three things in order
to handle dynamic regions;

1. Expand the static data structure to a dynamic data structure
capable of storing topological changes,

2. Detect topological changes, and

3. Correctly record these changes in the dynamic data structure.

69

1 2
b

a

0

a

2

b

1

2

0

1

2

21 4

a

b
3

0

a

3 4

b

1

34

04 03

1

3

1 3 4

c

0

c

1 3 4

134

03 03034

a. t=10, region com-
ponent 2 engulfs 1.

b. t=20, region com-
ponent 2 has split
into region compo-
nents 3 and 4.

c. t=30, region com-
ponent 3 no longer
engulfs 1. Connected
components a and b
have merged into c.

Figure 27: Dynamic region example with accompanying simplified maptree
showing three time steps for a simple region.

5.1.1 Dynamic data structure

Consider the example dynamic region configuration shown in figure
27. Between time periods 10 and 20 the region component 2 splits into
the region components 3 and 4, and between time periods 20 and 30

region component 1 is no longer engulfed by region component 3.
This removal of engulfment has also caused the region components
a and b to merge into c. To store these changes in the structure of
the region, the data structure must be expanded to account for when
changes to connected components and region components take place.
This is done by adding the columns t1 and t2 to the simplified map-
tree table, where t1 records when the region or connected component
is first detected and t2 records when it is no longer present. An exam-
ple of this is shown for the region in Figure 27 in table 5.

While this simplified maptree table is now capable of showing the
start and end times of region and connected components, it makes
no distinction between appearance and split events, or between disap-
pearance and merge events. For example, at time period 20, it appears
that all records of region component 2 have ended, instead replaced
with similar records of region components 3 and 4. This either means
that region component 2 has disappeared and region components 3

and 4 have appeared, or that region component 2 has split into the
region components 3 and 4.

To aid in distinguishing this, the change table, Ct, is introduced to
record split and merge events. Records where a region or connected

70

rida ridb cid t1 t2

-1 0 -1 0 ∅
0 2 a 0 20

1 2 b 0 20

0 3 a 20 30

0 4 a 20 30

1 3 b 20 30

3 4 a 20 30

0 1 c 30 ∅
0 3 c 30 ∅
0 4 c 30 ∅
1 3 c 30 ∅
3 4 c 30 ∅

Table 5: Simplified maptree table (Mt) augmented with start and end times
based on Figure 27.

component appear or disappear are then assumed to be appearance
or disappearance events respectively unless they have an associated
record in their change table. Table 6 shows an example of this for the
region in Figure 27. The first column, w, shows the id of the wholly
integrated region component whereas the columns p1 and p2 show
the individual parts. The next column, split, then indicates if the event
occurring is a split event or a merge event, with the final column, t,
indicating when the event occurred. From the example table, it can be
seen that region component 2 split into region components 3 and 4 at
time period 20 and that the connected components a and b merged
into connected component c at time period 30.

w p1 p2 split t

2 3 4 TRUE 20

c a b FALSE 30

Table 6: Change table (Ct) for logging split and merge events based on Fig-
ure 27.

5.1.2 Qualitative relations

By extending the data structure to account for changes to the sim-
plified maptree, the qualitative relation detection can be extended to
cover the ways in which region components both enter and leave
these configurations. Formally, consider a dynamic simplified map-
tree M where the configuration at a certain timestep t is expressed as

71

Mt|Mt ∈ M. For a region component to enter and leave a qualitative
relation, three time periods are required; where the region compo-
nent is not yet in the relation (t = i), has entered the relation (t = j),
and has left the relation (t = k); i.e., {Mi, Mj, Mk} ⊆ M|i < j < k.

1

2

b

a

2 a

3
a

1

2

c

56
1

1 54

d

54

d

54

d

u
n
e
n
g
u
lf

e
n
g
u
lf

e
n
c
lo
s
e

u
n
e
n
c
lo
s
e

s
u
rr
o
u
n
d

u
n
s
u
rr
o
u
n
d

expel

absorb

escape

capture

detatch

incorporate

elude

ensnare
d

2.
Engulfs

3.

5.
Surrounds

4.

6.

1.

Figure 28: Conceptual neighborhood graph for simple regions showing the
four possible methods region components can configure into or
out of an engulfs or surrounds relation.

Looking at the conceptual neighborhood graph [23] for simple re-
gions shown in Figure 28, there are four ways for each to transition
to or from engulfs and surrounds relations. This gives a total of 24

distinct ways to enter or exit an engulfs or surrounds relation. These
transitions can be split into three categories; those where a region
component appears or disappears, those where a region component

72

splits or merges, and those where there is no topological change but
a change in the internal configuration of the region. For simplicity’s
sake, only transitions entering the engulfs or surrounds relation will
be discussed, as detecting the reverse of these transitions can be done
by reversing the order of detected events.

There are two cases where region component appearance creates
a qualitative relation; the transition between region configuration 1

and the engulfs relation (engulf), and the transition between region
configuration 6 and the surrounds relation (surround). In both cases
a new region has appeared, although in the case of engulf, a new
connected component (b) has also appeared. These transitions can be
found by checking for the presence of a new surrounds or engulfs
relation after the appearance of a new region component.

For split events, there are three cases where a qualitative relation
is created; the transition between region configuration 2 and the en-
gulfs relation (expel), the transition between engulfs and surrounds
(unenclose), and the transition between region configuration 4 and
the surrounds relation (detach). In the cases of expel and detach, the
region component has split to form the engulfed/surrounded region
component and the engulfing or one of the surrounding region com-
ponents. This is in contrast to the unenclose transition where it is the
engulfing region component that has split into surrounding compo-
nents. Further distinguishing these three transitions is the appearance
of a connected component (b) for the expel transition and the merg-
ing of connected components (a and b merge to c) for the unenclose
transitions. While the expel and detach transitions can be found by
checking for the presence of a new surrounds or engulfs relation after
a split event, the unenclose transition must additionally be accompa-
nied by the merging of connected components.

There are two cases where there is a transition between qualitative
relations where no topological event (i.e., appearance, disappearance,
merging, and splitting) occurs; the transition between region configu-
ration 3 and the engulfs relation (capture), and the transition between
region configuration 5 and the surrounds relation (ensnare). The dis-
tinction between these two transitions is that capture causes a split
of the connected component (c splits into a and b). As there is no
associated topological event, these transitions can only be detected
by finding engulfs or surrounds relations where there are no such
events.

5.1.3 Algorithm design

To implement the dynamic simplified maptree, some aspects of the
original algorithm must be changed. Like the algorithm of section
4.2, modules 1 and 2 will remain unchanged, with the modifications
occurring to modules 3–5. Module 3 will have the simplified maptree

73

table replaced with the dynamic simplified maptree table and the
change table. Additionally, module 3 will need to be rerun to detect
changes in the simplified maptree.

Module 4 will group the present detected adjacency components
into connected components based on the previous time period’s con-
nected component members. Finally, module 5 will have to detect the
topological changes appear, disappear, merge, and split, and then re-
run modules 3 and 4 periodically. This algorithm will be referred to
as the simpleDynamic algorithm, and the relations between the mod-
ified modules can be seen in Figure 29. To explain the specifics of
implementing this model, the following sections, which include a de-
scription of the modified modules and their pseudocode, have been
provided.

3 42

0 1

a

Module 3c Module 4c

0

a

2 3 4

234

034 0232 4

Module 5c

Module 5c (accounting for node movement)

Sensor data

Module 1 Module 2

Figure 29: Flow diagram representing the interactions between the modules
that comprise the simpleDynamic algorithm.

5.1.4 Module 3c: Adjacency relation identification for dynamic regions

Module 3 essentially runs in an identical way to the module from
section 4.2. The main difference are that the dynamic simplified map-
tree table, Mt, has an additional two columns to represent the start
and end times of a relation, and that a change table, Ct, has been
added to track merge and split events in both region and connected
components.

To ensure that changes to the configuration of the connected com-
ponents are detected correctly, the junction table (Jt) is cleared every
time this module is run (Line 4). Additionally, new records are en-
tered into the dynamic simplified maptree table along with the time
that they are detected (Line 9). This time is also broadcast throughout
the network along with the record (Lines 10, 19).

74

Module 3c Dynamic adjacency graph propagation

1: Local variables: Dynamic simplified maptree table, Mt = 〈rida : N, ridb :
N, cid : N, t1 : T, t2 : T〉, initialized with record (−1, root,−1, 0,−1)
where root is the id of the region component comprising the exterior
of the region, Voronoi-junction table Jt = 〈rida : N, ridb : N, ridc : N〉,
initialized with zero records, Change table, Ct = 〈w : N, p1 : N, p2 :
N, split : {0, 1}, t : T〉, initialized with zero records.

regn

2: When adjacency timer elapsed
3: Reset adjacency, maptree timers
4: delete from Jt
5: if ˚adj = −1 then
6: let MinHop := select min (h) from Bt
7: let closest := select bid from Bt where h = MinHop
8: if |closest| = 2 then
9: insert into Mt values (Min(closest), Max(closest), ∅, now, ∅)

10: broadcast (bndy, closest, now)
11: broadcast (junq, s̊(now), closest)
12: if |closest| = 3 then
13: insert into Jt values closest
14: broadcast (junf, closest)
15: Receiving (bndy, pair, t′)
16: let record := (Min(closest), Max(closest), ∅, t′, ∅)
17: if record 6∈ Mt then
18: insert into Mt values record
19: broadcast (bndy, pair, t′)
20: Receiving (junq, s′, pair)
21: if s̊(now) = s′ and adj 6∈ pair and adj 6= −1 then
22: let junction := pair∪ adj
23: if junction 6∈ Jt then
24: broadcast (junf, junction)
25: insert into Jt values junction
26: Receiving (junf, Jt)
27: if junction 6∈ Jt then
28: insert into Jt values junction
29: broadcast (junf, junction)

5.1.5 Module 4c: Simplified maptree generation for dynamic regions

Once the maptree timer elapses, module 4 will assign connected com-
ponents to each new entry in the simplified maptree table based
on the previous time period’s connected component members. The
specifics of this can be broken into the following six stages:

1. Group region component ids into sets of connected components
(Lines 2–10).

2. Find connected components that have merged, add record to
change table (Ct), and assign new label to merged connected
component (Lines 14–20).

75

3. Find connected components that have split, add to change table
(Ct), and assign new labels to split connected components (Lines
21–28).

4. Assign labels to remaining connected components. Those that
have a one or less difference in members from an old connected
component will be assigned that connected component’s label,
and new connected components will be assigned a new label
(Lines 1–8 pt. 2).

5. Close older simplified maptree records (Line 9 pt. 2).

6. Assign connected component ids to new records, remove du-
plicate records, and reopen any records where a duplicate has
been removed (Lines 10-16 pt. 2).

Stage 1 operates identically to the original module from section
4.2. Stages 2 and 3 involve detecting split and merge events in the
connected components between the current records and the previous
records. To do this, a list of active connected component ids from the
previous records (i.e., records that have not stored a value in t2) is
needed (Line 11), along with the time that the current records were
opened (Line 12). A members function is also needed, which will re-
turn the set of region components that are Voronoi-adjacent to a con-
nected component. Merge events occur when members of two con-
nected components from the previous records are all present in a
single connected component in the current records. For split events
it is the reverse; members from a single connected component in the
previous records now comprise two connected components in the cur-
rent records.

These merge and split events are then added to the change table
(Ct), and new ids are assigned to the newly split or merged con-
nected components using the clabel function. Additionally, the region
ids comprising these connected components, along with the new con-
nected component ids, are added to the relations table (Rt). This is
a temporary table that will be used in stage 6 to assign the correct
connected component id to records in the simplified maptree table.

76

Module 4c Dynamic simplified maptree generation

1: Restrictions: component labeling function: clabel(c) → N where N

is a unique id for that set of region components, members function:
members(id)→ select rida, ridb from Mt where id = cid and t2 = ∅

regn

2: When maptree timer elapsed
3: let comp := collection of sets derived from entries from Jt
4: for all i ∈ comp do
5: for all j ∈ comp do
6: if |i ∩ j| ≥ 2 then
7: merge (i, j)
8: let remaining := set of all unique region ids of open records from Mt not

present in comp
9: for all k ∈ remaining do

10: let comp := comp ∪ {select rida, ridb from Mt where t2 = ∅ and

(rida = k or ridb = k)}
11: let cids := select cid from Mt where cid 6= ∅ and t2 = ∅
12: let t := select max(t1) from Mt
13: let Rt = 〈components : set of rids, cid : N〉, initialized with zero records
14: for all cidsi ∈ cids do
15: for all cidsj ∈ cids do
16: for all compk ∈ comp do
17: if members(cidsi) ∪members(cidsi) = compk then
18: insert into Ct values (clabel(compk), cidsi, cidsj, 0, t)
19: insert into Rt values (compk, clabel(compk))
20: set comp := comp \ {compk}
21: for all compi ∈ comp do
22: for all compj ∈ comp do
23: for all cidsk ∈ cids do
24: if compi ∪ compj = members(cidsk) then
25: insert into Ct values (cidsk, clabel(compi), clabel(compj), 1,

t)
26: insert into Rt values (compi, clabel(compi))
27: insert into Rt values (compj, clabel(compj))
28: set comp := comp \ {compi, compj}

Stage 4 then looks through the remaining components that have not
split or merged and attempts to match the current components with
that of the previous connected components. If the set of region com-
ponent ids differs by one or less member between the current records
and the previous records, then the new component is assigned the
label of the old component. This is done so that connected compo-
nents won’t be assigned new labels if a region component appears or
disappears.

Stage 5 closes the records from the previous time step by filling
their t2 column with the time that the current records were opened.
However, some of these records may continue, so in addition to as-
signing connected component ids to new records, stage 6 removes
these duplicate records. Consider a simplified maptree table storing

77

a transition from region configuration 3 to region configuration 1 in
Figure 27 at time period 10. Table 7 shows an example of this where
stage 5 has been completed and stage 6 has assigned the correct con-
nected component to the new record (entry 5). In this case entry 5 is a
duplicate of entry 3, meaning that entry 5 can be removed and entry
3 can have its t2 column set to ∅.

rida ridb cid t1 t2

-1 0 -1 0 ∅
0 1 a 0 10

0 2 a 0 10

1 2 a 0 10

0 2 a 10 ∅

Table 7: Dynamic simplified maptree table illustrating duplicated records.

At this point, the algorithm is now capable of detecting any sur-
rounds or engulfs relations at any previous time period using its dy-
namic simplified maptree table (Mt). By combing information from
this table with the change table (Ct), this algorithm is also capable of
detecting the specific type of transition that led to region components
entering and exiting these relations.

Module 4c Dynamic simplified maptree generation (continued)

regn

1: for all compi ∈ comp do
2: let foundMatch := FALSE
3: for all cidsj ∈ cids do
4: if |compi4members(cidsj)| ≤ 1 then
5: insert into Rt values (compi, cidsj)
6: set foundMatch := TRUE
7: if foundMatch = FALSE then
8: insert into Rt values (compi, clabel(compi))
9: update Mt set t2 = t where cid 6= ∅ and t2 = ∅

10: for all Mti ∈ Mt|cid = ∅ do
11: for all Rtj ∈ Rt do
12: if {rida.Mti, ridb.Mti} ⊆ Rtj.components then
13: update Mti set cid = Rtj.cid
14: if exists select rida.Mt, ridb.Mt, t1.Mt from Mt where rida.Mt =

rida.Mti and ridb.Mt = ridb.Mti and cid.Mt = cid.Mti and t1.Mt <
t2.Mti then

15: delete from Mt record Mti
16: update Mt set t2 = ∅ where rida.Mt = rida.Mti and ridb.Mt =

ridb.Mti and cid.Mt = cid.Mti
17: update Mt set t2 = now where t1 = t2

78

5.1.6 Module 5c: Node movement for dynamic regions

The final module is tasked with the detection of the topological events
appear, disappear, merge, and split. The module then reruns mod-
ules 3 and 4 both periodically and when these events occur. Like the
original module from section 4.2, module 5 refreshes the boundary
table (Bt) (Lines 9–11) and updates both the region component and
Voronoi region component ids by swapping them (Lines 5–7) when-
ever a node enters a new region (Line 3).

Additionally, nodes entering a region reset their regionChange timer
and broadcast a request message to their neighbors (Lines 4, 12). Un-
like previous timers, which are triggered at the same time for all
nodes, this regionChange timer is specific to individual nodes. The
regionChange timer is used to prevent nodes that have just changed
regions from sending response messages (Lines 13–15). Preventing
newly transitioned nodes from broadcasting information ensures that
cases where multiple nodes enter a new region at the same time do
not influence results.

Nodes that have sent a request message will then wait until they
have received a response from all of their neighbors that have not
recently transitioned. If all of the received sensed values match the
node’s own, then the region component the node was previously in
has disappeared; this will be picked up by the next round of modules
3 and 4.

If all of the received sensed values do not match the node’s own
sensed value, then the region component the node has entered has
just appeared. This new region component is then assigned a new
component region id using the rlabel function, which produces an as
yet unused id based on the current time and a region component id.
Recall from the start of this chapter that at most one topological event
can occur during a single time period; this ensures that the region
will have a unique name. Additionally, if there are multiple nodes
entering this new region component, they will all select the same id.
The next round of modules 3 and 4 will then record this topological
event in the dynamic simplified maptree (Mt) (Lines 16–19).

It is important to note that changes to the underlying region com-
ponents must be gradual and continuous. Specifically, the boundaries
of the underlying region components should not spontaneously ex-
pand or contract at a distance larger than the communication distance
of the nodes. This expansion or contraction would be erroneously
detected as a pair of simultaneous appearance and disappearance
events.

79

Module 5c Dynamic node movement

1: Restrictions: region component labeling function: rlabel(id, t) → N

where N is a unique unused id for a region component based on an
id and the current time.

2: Local variables: split component id sid : V → N ∪ {−1}, initialized to
˚id, split table St = 〈rid : N, sid : N〉.

regn

3: When s̊(now) changes
4: Reset regionChange timer
5: set tmp := ˚rid
6: set ˚rid := ˚adj
7: set ˚adj := tmp
8: set ˚sid := −1
9: delete from Bt

10: if ˚adj 6= −1 then
11: insert into Bt values (˚adj, 1)
12: broadcast (rqst, s̊(now))
13: Receiving (rqst, s′)
14: if regionChange timer elapsed then
15: broadcast (rspc, s̊(now))
16: Receiving (rspc, s′)
17: if all s′ 6= s̊(now) then
18: set ˚rid := rlabel(˚adj, now)
19: broadcast (hop, s̊(now), ˚rid, 1)
20: When topologyChange timer elapsed
21: Reset topologyChange, split timers
22: broadcast (merge1, ˚rid, s̊(now))
23: delete from St
24: set ˚sid := ˚id
25: broadcast (split1, ˚sid, s̊(now))

While region component appearance and disappearance events can
be detected by nodes polling the sensed values of their neighbors, the
detection of merge and split events can only be detected by periodi-
cally checking for them. This is done using the topologyChange timer,
which when elapsed sends out merge and split messages. To detect
merge events, a merge1 message is sent out with the node’s current
region component id (rid) along with its current sensed value (Line
22). If a neighboring region with the same sensed value has a differ-
ent region component id, then two regions have merged (Lines 1–2 pt.
2). If this is the case, a new id is assigned using the rlabel function, the
merge event is added to the node’s change table (Ct), and a merge2

message is broadcast (Lines 3–7 pt. 2). Nodes receiving this merge2

message that have not stored this merge event will add it to their
change table (Lines 8–11 pt. 2). Additionally, nodes that still have the
region component id of the previous parts will update to the id of the
new merged region (Lines 12–13 pt. 2).

Detecting the spiting of region components is done by first using
leader election [8, 78, 81] to assign a split id (sid) to each current

80

region component (Lines 23–25 pt. 1, 14–17 pt. 2). This split id is then
sent out along with the region component id, to be stored in the split
table (St) of every node (Lines 18–23, 38 pt. 2). If there are records with
the same region ids but different split ids, then a split has occurred
in this region (Lines 24–26 pt. 2). This split is added to the change
table and new region ids are assigned to the split region components
(Lines 27–30 pt. 2). Additionally, if the current node is within one
of these split region components, then their region component id is
updated (Lines 31–37 pt. 2).

Module 5c Dynamic node movement (continued)

regn

1: Receiving (merge1, rid′, s′)
2: if s̊(now) = s′ and

˚rid 6= rid′ then
3: let p1 := min(˚rid, rid′)
4: let p2 := max(˚rid, rid′)
5: set ˚rid := rlabel(˚adj, now)
6: insert into Ct values (˚rid, p1, p2, 0, now)
7: broadcast (merge2, ˚rid, p1, p2, now)
8: Receiving (merge2, rid′, p′1, p′2, t′)
9: if (rid′, p′1, p′2, 0, t′) 6∈ Ct then

10: insert into Ct values (rid′, p′1, p′2, 0, t′)
11: broadcast (merge2, rid′, p′1, p′2, t′)
12: if ˚rid = p′1 or p′2 then
13: set ˚rid := rid′

14: Receiving (split1, sid′, s′)
15: if s′ = s̊(now) and sid′ < ˚sid and

˚sid 6= −1 then
16: set ˚sid := sid′

17: broadcast (split1, ˚sid, s̊(now))
18: When split timer elapsed
19: if ˚sid 6= −1 then
20: broadcast (split2, ˚rid, ˚sid)
21: Receiving (split2, rid′, sid′)
22: if (rid′, sid′) 6∈ St then
23: insert into St records (rid′, sid′)
24: for all Sti ∈ St do
25: for all Stj ∈ St do
26: if rid.Sti = rid.Stj and sid.Sti = sid.Stj then
27: let p1 := rlabel(sid.Sti, now)
28: let p2 := rlabel(sid.Stj, now)
29: let w := rid.Sti
30: insert into Ct values (w, p1, p2, 1, now)
31: if ˚rid = rid.Sti then
32: if ˚sid = −1 then
33: set ˚rid := −1
34: if ˚sid = sid.Sti then
35: set ˚rid := p1
36: if ˚sid = sid.Stj then
37: set ˚rid := p2
38: broadcast (split2, rid′, sid′)

81

5.2 complex regions

While the algorithms of the previous section are sufficient for deter-
mining the dynamic simplified maptree for simple regions, further
modifications are required to accurately describe the dynamic sim-
plified maptrees for complex areal objects. Of particular note is that
region components are now capable of self merging and self-splitting.
Consider the example dynamic region configuration shown in Fig-
ure 30. Like Figure 25 from section 4.3, this complex region example
has two sets of Voronoi-adjacency boundaries, induced by the posi-
tive and the negative region components. Formally, M+

t and M−t will
refer to the simplified maptrees of the positive and negative region
components respectively at a specific time period.

Between time periods 10 and 20 the region component 2 self-merges,
causing region component component 2 to contain region component
3 instead of engulfing it. This also causes region component 1 to split
into region components 6 and 7 and the appearance of connected
component d. Storing these changes to the positive and negative sim-
plified maptrees will be done with a slight modification to the dy-
namic simplified maptree table, namely the addition of a neg column
that indicates whether the entry is part of the positive maptree or
negative maptree. An example of this for Figure 30 is shown in table
8.

rida ridb cid neg t1 t2

-1 0 -1 0 0 ∅
0 2 a 0 0 40

0 4 a 0 0 ∅
2 4 a 0 0 40

2 3 b 0 0 40

0 8 a 0 40 ∅
4 8 a 0 40 ∅
1 5 c 1 0 20

5 6 c 1 20 30

6 7 d 1 20 ∅

Table 8: Simplified maptree table based on Figure 30.

Like the dynamic simplified maptree table of the previous section,
while this table is capable of showing the start and end times of region
and connected components, it makes no distinction between appear-
ance and split events, or between disappearance and merge events.
Storing merge and split events will again be accomplished using the
change table (table 9), which remains unchanged. Self-merge and self-
split events are not explicitly stored as they coincide with splitting

82

a

b c

5

1

4

3 2

0

a

2 4

b

3

24

04 02

3

2

1

c

5

5

1

a

b c

5

6

4

3 2
7

d

0

a

2 4

b

3

24

04 02

3

2

6

c d
5 7

5
6

7
6

a. t=10, region component 2 en-
gulfs region component 3.

b. t=20, region component 1 has
split into regions 6 and 7, region
component 2 now contains region
3.

a

b

6

4

3 2
7

d

0

a

2 4

b

3

24

04 02

3

2

6

d

7

7

6

a

6

4

8
7

d

0

a

2 4

48

04 08

6

d

7

7

6

c. t=30, region component 5 disap-
pears.

d. t=40, regions components 2 and
3 have merged.

Figure 30: Dynamic region example with accompanying simplified maptree
showing three time steps for a simple region. Positive region
components are grey and negative region components are white.
Black lines represent the Voronoi boundaries induced by positive
region components and blue lines represent the Voronoi bound-
aries induced by negative region components.

83

and merging events of adjacent region components. For example, the
self merging of the positive region component 2 occurs with the split-
ting of the negative region component 1 into region components 6

and 7.

w p1 p2 split t

1 6 7 TRUE 20

8 2 3 FALSE 30

Table 9: Change table (Ct) for logging split and merge events based on Fig-
ure 30.

In order to determine which region has self-merged or self-split
from a split or merge event, information is required from the oppo-
site simplified maptree. Specifically, the region component that has
self-merged or self-split will be the one containing the connected com-
ponent separating the connected components that have just split or
merged. To use the splitting of the negative region component 1 as
an example, it can be seen that region components 6 and 7 are sep-
arated by connected component d at this time period. As connected
component d is contained within the positive region component 2 at
this time period, it can be concluded that region component 2 has
self-merged.

As mentioned in section 4.3, each connected component is con-
tained within the Voronoi region component of its opposite simpli-
fied maptree; this relationship is defined by the label function. For
this to work with dynamic simplified maptrees, this function must be
extended to specify a time period, i.e., B+

t → W−t . This function can
be stored in a label table (Lt), and an example output of this for the
object in Figure 30 is presented in Table 10.

cid rid t1 t2

a 1 0 20

a 6 20 ∅
b 1 0 20

b 7 20 40

c 4 0 30

d 2 20 40

d 8 40 ∅

Table 10: Label table (Lt) for logging mappings between conected compo-
nents and the region components that contain them based on Fig-
ure 30.

84

5.2.1 Qualitative relations

By extending the dynamic data structure to account for complex re-
gions, the qualitative relation detection can be further extend to addi-
tionally cover the ways in which region components both enter and
leave the contains relation. Looking at the conceptual neighborhood
graph for complex regions shown in Figure 31, there are three ways
to transition to or from the contains relation. This is in contrast to the
four possible transitions for the engulfs and surrounds relations.

Looking at the three categories of transitions, though the first and
second categories (where a region component appears or disappears
and where a region component splits or merges) are represented, the
third category is not. Recall that the third category is for transitions
where there is no topological change but a change in the internal con-
figuration of the regions, as demonstrated by the capture and ensnare
transitions. This category of transitions is not possible for the contains
relation as it would involve the contained region component pushing
through the containing region.

Again for simplicity’s sake, only transitions entering the contains
relation will be discussed as detecting the reverse of these transitions
can be done by reversing the order of detected events. Additionally,
transitions to and from the engulfs and surrounds relations will not
be discussed as there is no change to their function from the previous
section.

Another case where region component appearance creates a qual-
itative relation, is the transition between region configuration 7 and
the contains relation (appear). As was the case for the engulf and sur-
round transitions, a new region has appeared. This appear transition
is most like the engulf transition as it also features the appearance
of a new connected component (b). This transition can be found by
checking for the presence of a new contains relation and connected
component after the appearance of a new region component.

For split events, there are two additional cases where a qualita-
tive relation is created; the transition between region configuration 8

and the contains relation (split), and the transition between the en-
gulfs and contains (confine) relation. In the case of split events, the
region component has split to form the containing and contained re-
gion components. This is in contrast to the confine transition where
the negative region component (9) has split, causing the engulfing re-
gion component to self-merge. Further distinguishing these two tran-
sitions is the appearance of a connected component (b) for the split
transition and the appearance of a negative connected component (e)
for the confine transition. The split transition can be found by check-
ing for the presence of a new contains relation after a split event in
a positive region component and the appearance of a new connected
component. This is in contrast to the confine transition, which must

85

instead be accompanied by the splitting of a negative region compo-
nent and the appearance of a negative connected component.

a

1b
2

e 9
8

1
2

b

a
3

a

1

2

c

56
1

1 54

d

54

d

54

d

co
nf
in
e

re
le
a
se

en
cl
os
e

un
en
cl
o
se

su
rr
o
un
d

un
su
rr
ou
nd

expel

absorb

escape

capture

detatch

incorporate

elude

ensnare
d

2.
Engulfs

3.

5.
Surrounds

4.

6.

di
sa
pp
e
ar

ap
pe
ar

Contains

7.

1.
2 a

un
en
gu
lf

en
gu
lf

split

merge

8.

a2
e 9

8

7

a
10

e 9
8

Figure 31: Conceptual neighborhood graph for complex regions showing
the methods by which region components can configure into or
out of an contains, engulfs or surrounds relation.

86

5.2.2 Algorithm design

To extend the implementation of the dynamic simplified maptree for
simple regions to complex regions, some key changes from the pre-
vious algorithm must be made. Specifically, a label table, Lt, must be
added to store what region components the connected components
reside within at any given time. This is for the extended label func-
tion to be able to distinguish between engulfs and contains relations
as well as to detect self-split and self-merge events. Additionally, a
new column must be added to the simplified maptree table (Mt) in
order to distinguish entries that are part of the positive and nega-
tive dynamic simplified maptrees. To implement these new features,
it is only necessary to update modules 3 and 4. This algorithm will
be referred to as the complexDynamic algorithm, and the relations
between the modified modules are identical to those shown for the
simpleDynamic algorithm in Figure 29. To explain the specifics of
implementing this model, the following sections, which include a de-
scription of the modified modules and their pseudocode, have been
provided.

5.2.3 Module 3d: Adjacency relation identification for complex dynamic
regions

Module 3 runs almost identically to the module from section 5.1, how-
ever where this module differs is that the dynamic simplified maptree
table,Mt, has an additional neg column to indicate whether a relation
is a part of the positive or negative dynamic simplified maptree table.
This neg column is populated with the sensed value of the node that
has detected the relation (Line 9).

Additionally, the adjacency table, At, has been added to store the
ids of region component pairs that are adjacent. This table is cleared
each time module 3 is run (Lines 1, 4). Nodes on the boundary be-
tween two Voronoi regions will add the id of these regions along
with their region component id (rid) to their adjacency table before
broadcasting this information throughout the network using the bndy

message (Lines 8, 10–12). Using Figure 30.a as an example, a node on
the boundary between the Voronoi region components 2 and 4 would
add the records (1, 2) and (1, 4) to its adjacency table. In addition to
storing new simplified maptree records, nodes receiving a bndy mes-
sage will add the received region component ids to their adjacency
tables before rebroadcasting the message (Lines 17, 21-23). This table
will be used by module 4 to determine which region component a
connected component resides within.

87

Module 3d Dynamic adjacency graph propagation for complex re-
gions

1: Local variables: Dynamic simplified maptree table, Mt = 〈rida : N,
ridb : N, cid : N, neg : {0, 1}, t1 : T, t2 : T〉, initialized with
record (−1, root,−1, 0, 0,−1) where root is the id of the region com-
ponent comprising the exterior of the region, Voronoi-junction table
Jt = 〈rida : N, ridb : N, ridc : N〉, initialized with zero records, Change
table, Ct = 〈w : N, p1 : N, p2 : N, split : {0, 1}, t : T〉, initialized with
zero records, Adjacency table At = 〈rida : N, ridb : N〉, initialized with
zero records.

regn

2: When adjacency timer elapsed
3: Reset adjacency, maptree timers
4: delete from Jt, At
5: if ˚adj = −1 then
6: let MinHop := select min (h) from Bt
7: let closest := select bid from Bt where h = MinHop
8: if |closest| = 2 then
9: insert into Mt values (Min(closest), Max(closest), ∅, s̊(now),

now, ∅)
10: insert into At values (Min(˚rid, Min(closest)), Max(˚rid,

Min(closest)))
11: insert into At values (Min(˚rid, Max(closest)), Max(˚rid,

Max(closest)))
12: broadcast (bndy, closest, ˚rid, s̊(now), now)
13: broadcast (junq, s̊(now), closest)
14: if |closest| = 3 then
15: insert into Jt values closest
16: broadcast (junf, closest)
17: Receiving (bndy, pair, rid′, s′, t′)
18: let record := (Min(closest), Max(closest), ∅, s′, t′, ∅)
19: if record 6∈ Mt then
20: insert into Mt values record
21: insert into At values (Min(rid′, Min(closest)), Max(rid′,

Min(closest)))
22: insert into At values (Min(rid′, Max(closest)), Max(rid′,

Max(closest)))
23: broadcast (bndy, pair, rid′, s′, t′)
24: Receiving (junq, s′, pair)
25: if s̊(now) = s′ and adj 6∈ pair and adj 6= −1 then
26: let junction := pair∪ adj
27: if junction 6∈ Jt then
28: broadcast (junf, junction)
29: insert into Jt values junction
30: Receiving (junf, Jt)
31: if junction 6∈ Jt then
32: insert into Jt values junction
33: broadcast (junf, junction)

88

5.2.4 Module 4d: Simplified maptree generation for complex dynamic re-
gions

As before, module 4 will group the present detected adjacency compo-
nents into connected components based on the previous time period’s
connected component members. The specifics of this were covered by
the following six stages used by the previous algorithm:

1. Group region component ids into sets of connected components
(Lines 2–10).

2. Find connected components that have merged, add record to
change table (Ct), and assign a new label to the merged con-
nected component (Lines 14–20).

3. Find connected components that have split, add to change table,
and assign new labels to split connected components (Lines 21–
28).

4. Assign labels to remaining connected components. Those with
one or fewer difference in members from an old connected com-
ponent will be assigned that connected component’s label. New
connected components will be assigned a new label (Lines 1–8

pt. 2).

5. Close older simplified maptree records (Line 9 pt. 2).

6. Assign connected component ids to new records, remove du-
plicate records, and reopen any records where a duplicate has
been removed (Lines 10-16 pt. 2).

Where this module differs is with the addition of the following two
stages, which keep the label table (Lt) updated:

7. Close older label records (Line 17 pt. 2).

8. Match connected component ids to their region components,
either making new records or reopening unchanged records
(Lines 18-23 pt. 2).

Stage 6 closes the label records from the previous time step by
filling their t2 column with the time that the current records were
opened. Some of these records may continue, so in addition to match-
ing connected component ids with region component ids, stage 7 re-
opens these unchanged records. Consider the label table storing a
transition from Figure 30.a to Figure 30.b; table 11 shows an example
of this where stage 6 has closed the first three records but stage 7 has
has had to reopen the third record.

To match the connected component ids with region component ids,
module 4 requires the adjacency function, which returns the set of ad-
jacent regions for any given region. Running this function on region

89

cid rid t1 t2

a 1 10 20

b 1 10 20

c 4 10 ∅
a 6 20 ∅
b 7 20 ∅
d 2 20 ∅

Table 11: Label table of Figure 30 when t = 20.

component 6 of Figure 30.b would produce adjacent(6) = {0, 2, 4},
meaning that region component 6 is adjacent to region components 0,
2, and 7. Given that each connected component is stored along with
its set of region component ids, it is then possible to perform a match.
For example, in Figure 30.b it can be determined that connected com-
ponent a resides within region component 6, given that a consists
of region components 0, 2, and 4, which is an improper subset of
adjacent(6) (Line 19).

At this point, the algorithm is now capable of detecting any con-
tains, surrounds, or engulfs relations at any previous time period
using its dynamic simplified maptree table (Mt). By combing infor-
mation from this table with the change table (Ct), this algorithm is
also capable of detecting the specific type of transition that led to
region components entering and exiting these relations.

90

Module 4d Dynamic simplified maptree generation for complex re-
gions

1: Restrictions: component labeling function: clabel(c) → N where N

is a unique id for that set of region components, members function:
members(id) → select rida, ridb from Mt where id = cid and t2 = ∅,
adjacency function: adjacent(rid)→ {rid′ ∈ R|(rid, rid′) ∈ At}

regn

2: When maptree timer elapsed
3: let comp := collection of sets derived from entries from Jt
4: for all i ∈ comp do
5: for all j ∈ comp do
6: if |i ∩ j| ≥ 2 then
7: merge (i, j)
8: let remaining := set of all unique region ids of open records from Mt not

present in comp
9: for all k ∈ remaining do

10: let comp := comp ∪ {select rida, ridb from Mt where t2 = ∅ and

(rida = k or ridb = k)}
11: let cids := select cid from Mt where cid 6= ∅ and t2 = ∅
12: let t := select max(t1) from Mt
13: let Rt = 〈components : set of rids, cid : N〉, initialized with zero

records
14: for all cidsi ∈ cids do
15: for all cidsj ∈ cids do
16: for all compk ∈ comp do
17: if members(cidsi) ∪members(cidsi) = compk then
18: insert into Ct values (clabel(compk), cidsi, cidsj, 0, t)
19: insert into Rt values (compk, clabel(compk))
20: set comp := comp \ {compk}
21: for all compi ∈ comp do
22: for all compj ∈ comp do
23: for all cidsk ∈ cids do
24: if compi ∪ compj = members(cidsk) then
25: insert into Ct values (cidsk, clabel(compi), clabel(compj), 1,

t)
26: insert into Rt values (compi, clabel(compi))
27: insert into Rt values (compj, clabel(compj))
28: set comp := comp \ {compi, compj}

91

Module 4d Dynamic simplified maptree generation for complex re-
gions (continued)

regn

1: for all compi ∈ comp do
2: let foundMatch := FALSE
3: for all cidsj ∈ cids do
4: if |compi4members(cidsj)| ≤ 1 then
5: insert into Rt values (compi, cidsj)
6: set foundMatch := TRUE
7: if foundMatch = FALSE then
8: insert into Rt values (compi, clabel(compi))
9: update Mt set t2 = t where cid 6= ∅ and t2 = ∅

10: for all Mti ∈ Mt|cid = ∅ do
11: for all Rtj ∈ Rt do
12: if {rida.Mti, ridb.Mti} ⊆ Rtj.components then
13: update Mti set cid = Rtj.cid
14: if exists select rida.Mt, ridb.Mt, t1.Mt from Mt where rida.Mt =

rida.Mti and ridb.Mt = ridb.Mti and cid.Mt = cid.Mti and t1.Mt <
t2.Mti then

15: delete from Mt record Mti
16: update Mt set t2 = ∅ where rida.Mt = rida.Mti and ridb.Mt =

ridb.Mti and cid.Mt = cid.Mti
17: update Lt set t2 = t where t2 = ∅
18: for all Rti ∈ Rt do
19: let conatinedIn := rid|{components.Rti ⊆ adjacent(rid)}
20: if exists select ∗ from Lt where cid = cid.Rti and rid = containedIn

and t2 = t then
21: update Lt set set t2 = ∅ where cid = cid.Rti and rid =

containedIn and t2 = t
22: else
23: insert into Lt values (cid.Rti, containedIn, t, ∅)
24: update Mt set t2 = now where t1 = t2

5.3 summary

This chapter has presented two decentralized algorithms that are ca-
pable of determining the internal structure of dynamic regions and
discovering any qualitative relations that may be present as well as
the manner in which these relations were entered into and exited
from. Like the algorithms of the previous chapter, this is all done
without reference to location and while the nodes within the network
are mobile. The key difference between the algorithms of this chap-
ter and those of the previous is that these algorithms are capable of
detecting topological events occurring in the underlying region and
recording these changes. While both algorithms of this chapter are ca-
pable of extracting high level knowledge from low level sensor data
provided by individual nodes in the network, there are some key dif-
ferences between them:

92

• The first algorithm is only capable of running on simple regions
and introduces the dynamic simplified maptree data structure
for the storage of the adjacency relations of the Voronoi regions
induced by the region components. This algorithm is capable of
detecting region component appearance, disappearance, split-
ting, and merging. Additionally, this algorithm is capable of de-
tecting the four distinct ways a region component can enter and
exit a surrounds or engulfs relation.

• The second algorithm extends the first so that it may run on
complex region configurations. It does so by splitting the dy-
namic simplified maptree into two maptrees; the positive sim-
plified maptree for relations induced by the positive region com-
ponents and the negative simplified maptree for the relations
induced by the negative region components. This algorithm is
additionally capable of detecting region component self-merge
and self-split, and can distinguish between engulfs and contains
relations. Furthermore, this algorithm is capable of detecting
the three distinct ways a region component can enter and exit a
contains relation.

Chapter 6 will evaluate these algorithms in terms of communica-
tion complexity and veracity.

93

6
E VA L U AT I O N

This chapter presents experimental evaluations of the three algorithms
devised for static regions presented in Chapter 4 and the two algo-
rithms devised for dynamic regions presented in Chapter 5. As dis-
cussed in Chapter 3, these algorithms have been implemented in the
NetLogo simulation environment, with their performance evaluated
in terms of veracity and then scalability. For ease of reference, the
names of these five algorithms will be reiterated here:

1. basicStatic: Basic data structure algorithm from section 4.1, ca-
pable of running on simple or complex static regions.

2. simpleStatic: Simplified maptree algorithm from section 4.2, ca-
pable of running on simple static regions.

3. complexStatic: Simplified maptree algorithm from section 4.3,
capable of running on simple or complex static regions.

4. simpleDynamic: Dynamic simplified maptree algorithm from
section 5.1, capable of running on simple dynamic regions.

5. complexDynamic: Dynamic simplified maptree algorithm from
section 5.2, capable of running on simple or complex dynamic
regions.

95

To illustrate the specifics of the interactions between the modules
comprising the five algorithms, Figure 32 has been provided.

Module 3d Module 4d

Module 5d

Module 5d
(topology change)

Module 1

Module 3 Module 4Module 2

Module 3a Module 4a

Module 3b Module 4b

Module 3c Module 4c

Module 5c

Module 5

Module 5a

Module 5c
(topology change)

Module 5b

basicStatic algorithm

simpleStatic algorithm

complexStatic algorithm

simpleDynamic algorithm

complexDynamic algorithm

(node movement)

(node movement)

Figure 32: Flow diagram representing the interactions between the modules
that comprise the five algorithms. Modules shaded blue comprise
algorithms designed for static regions and modules shaded green
comprise algorithms designed for dynamic regions.

During these evaluations, nodes within the networks move accord-
ing to a Correlated Random Walk (CRW) [82] over a variety of region
configurations within the simulation environment. A node moving
according to a CRW exhibits a correlation in its heading between sub-
sequent movement steps. As this correlation increases, the node tends
towards moving in a straight line. This is in contrast to random walks,
where there is no correlation between subsequent headings. As all di-

96

rections are equally likely for random walks, nodes would instead
move according to Brownian motion.

A CRW movement pattern has been chosen for these nodes as it
provides a simple approximation of many natural movement pat-
terns, such as those observed in herd animals [83, 84]. This movement
pattern was implemented by nodes selecting a new heading from a
normal distribution with a mean centered at the node’s current head-
ing and a standard deviation of 45

◦. Nodes would then move a dis-
tance of one patch width in that direction. Additionally, nodes were
assigned a random location and heading at the start of each simula-
tion.

6.1 veracity

Common to all five algorithms is that they utilize the same code for
modules 1 and 2. Assuming that the conditions are met for these
modules to perform correctly, all five algorithms will produce correct
results. Figure 33 shows an example implementation of modules 1

and 2 on a complex areal object originally displayed in Figure 25.
To examine veracity, a simulation environment consisting of four

square alternating positive and negative region components was used.
Each region was 20 patches (a square of arbitrary size used in NetL-
ogo) in width giving a total simulation size of 80×20 patches. This
simulation environment wrapped both horizontally and vertically
(i.e., projected onto a torus) to eliminate any edge effects (i.e., issues
that occur when nodes reach the edge of the simulation space).

6.1.1 Veracity of module 1

When discussing the veracity of an algorithm, it is important to first
define the conditions the algorithm will function under. Module 1

assumes that there will be at least one node in each region component,
with all nodes in that region component making up a connected sub-
graph. It is further assumed that the communication distance will be
smaller than the smallest distance between any two positive or any
two negative region components. If the distance is larger, then it is
possible that two separate regions will be falsely counted as one; this
is a type of error known as a granularity effect.

To test these assumptions, module 1 was run for 30 ticks (simula-
tion time steps) under a variety of network sizes and communication
distances, recording the percentage of nodes with the correct region
component id. Six network sizes were chosen as well as communica-
tion distances between 1 and 30 patch widths. This module was run
for 30 ticks as it is larger than the diagonal distance of the region
components (28.28). Given that the smallest communication distance

97

Figure 33: Expected and observed regions as well as Voronoi boundaries for
the complex areal object originally displayed in Figure 25. Black
and white lines represent the Voronoi boundaries induced by pos-
itive and negative region components respectively. Displays an
example implementation of modules 1 and 2 on a network with
10,000 nodes.

is 1, it would take at most 28 ticks to send a message from one corner
of a region component to its diagonal opposite.

The average of 100 runs for each of these configurations was used,
leading to a total of 18,000 experimental runs. Recall that each region
is a square of 20×20 patches so any communication distance over
20 patches will lead to two region components sharing the same id.
When two region components share the same id, all nodes within
those regions were logged as having an incorrect region component
id.

From Figure 34, it can be seen that there is poor performance at low
communication distances for all network sizes, meaning that the net-
work is too sparsely populated for all nodes within a region compo-
nent to be connected. The performance of larger networks improves
faster with increasing communication distance but drops rapidly af-
ter a distance of 20 patches for all network sizes. This drop is due to

98

0%

50%

100%

0 10 20 30
Communication distance

%
 C

or
re

ct
 r

eg
io

n
id

s
Network size

25
50
100
200
400
800

Figure 34: Veracity of module 1 for varying network sizes and communica-
tion distances, adapted from [12].

the effect of network granularity, which causes multiple region com-
ponents to share the same id.

From this graph, it can be concluded that both communication dis-
tance and network size influence module 1’s performance, with com-
munication distance having the greater effect. This experiment illus-
trates the type of trade-offs that occur when using decentralized ap-
proaches. In this case, it is between network size and communication
distance. For example, a network size of 25 and a communication dis-
tance of 14 produces results that are as accurate as those produces by
a network size of 800 and a communication distance of 3. Specifically,
as transmission costs increase rapidly with communication distance,
it may be more cost effective to increase the network size and decrease
the communication distance.

6.1.2 Veracity of module 2

Common to module 5 for every algorithm is that when a node enters
a new region component (i.e., its sensed value has changed), it swaps
its region component id and Voronoi region component id (rid and
adj respectively). For any of these algorithms to function correctly,
a node must know the correct id of the Voronoi region component
it is in, as well as the correct region component id prior to changing
regions. For this to occur, nodes traveling between positive or between
negative regions must have their Voronoi region id updated after they
have crossed the Voronoi boundary but before they have changed
regions.

To ensure that the Voronoi boundary is in the correct location when
using a mobile geosensor network, module 2 must be rerun periodi-
cally. How often this module is rerun is determined by the length of

99

the broadcast timer. Assuming that the communication speed of mod-
ule 2 is much faster than the movement speed of the nodes, how often
module 2 must be run can be determined. Suppose d is the shortest
distance between any two positive or negative region components, s
is the maximum speed of the nodes, and b is the broadcast interval
of module 2. The following formula can predict the largest refresh
interval needed to ensure that the algorithm runs correctly: b ≤ d

2s .
For this experiment, the region configuration is unchanged, mean-

ing that the minimum distance between any two positive or negative
region components is 20 patches. Setting the node speed to 1 patch
per tick, it can be assumed that any refresh interval up to once ev-
ery 10 ticks will be capable of producing correct results. This is as-
suming that the node density is high enough that nodes will cross
a Voronoi boundary between either positive or negative region com-
ponents. This experiment has been run with four network sizes and
broadcast intervals between 1 and 50. Again, the average of 100 runs
for each of these configurations was used, leading to a total of 20,000

experimental runs. Each run allowed for 10 rounds of module 2 (i.e.:
that the hop message was sent 10 times). Communication distance
was set at 5 patch widths and nodes moved according to a correlated
random walk.

0%

25%

50%

75%

100%

0 10 20 30 40 50
Module 2 broadcast interval

%
 C

or
re

ct
 r

eg
io

n
id

s

Network size
100
200
400
800

Figure 35: Veracity of module 2 for varying network sizes and communica-
tion distances.

From Figure 35, it can be seen that given a sufficient node den-
sity (in this case, a network size of 200 or greater), module 2 will
produce correct results up to a refresh interval of approximately 12,
after which the accuracy drops to approximately 50% at varying rates
based on network size. This was expected as there are two positive
and two negative region components, meaning that there is still a 50%
chance of a node having the correct region id regardless of module
2’s accuracy.

100

Looking at the results for a network size of 100, it can be seen that
no refresh interval will produce completely accurate results. This, like
the low communication distances in Figure 34, is due to the network
being too sparsely populated for all nodes within a region component
to be connected, leading to the generation of superfluous region com-
ponent ids. Specifically, network sizes of 100 detected an average of
8.16 region components. This was also an issue to a lesser extent for
networks of size 200, which detected an average of 4.2 region com-
ponents. However, this network size was still able to produce very
accurate results (> 99% for refresh intervals ≤ 10), indicating that
these superfluous regions contained very few nodes. Networks with
400 and 800 nodes were of sufficient density to always detect precisely
four region components.

It is interesting to note that the refresh interval producing correct
results was larger than the calculated interval of 10. This difference
is expected as the formula assumes that nodes will follow the short-
est path between positive or between negative region components;
however this is not the case in the experiments as the nodes move
according to a correlated random walk. From this graph, it can be
concluded that while network size and the refresh interval of module
2 both influence module 5’s performance, selecting a refresh inter-
val close to the calculated refresh interval, and a node density that
allows sufficient communication of module 2’s message, will always
produce accurate results.

6.2 scalability of static regions

As discussed in section 3.3, an algorithm’s scalability is determined
by how the amount of node communication is affected by an increase
in network size. Scalability can be divided into communication com-
plexity when considering the amount of communication necessary for
the entire network, and load balance when considering the amount
of communication for individual nodes.

The algorithms tested in this section ran on either the simple region
configuration of Figure 22 or the complex region configuration of
Figure 25. In either case, this produced a simulation size of 290×145

patches. Communication distance was initially set to a radius of ten
patch widths, giving nodes an average communication neighborhood
of approximately 30 nodes for a network size of 4,000.

Node movement occurred every 50 ticks, with a movement distance
of 2.5 patches. The broadcast timer was set to 25, meaning that mod-
ule 2 was rerun twice as often as the nodes moved. The region timer
was set to 100, giving 100 ticks for module 1 to initialize the network.
The adjacency timer was set to 170, meaning that module 3 ran af-
ter 170 ticks. The maptree timer was set for 50 ticks later (at 220),
giving 50 ticks for module 3 to complete before module 4 began. Ad-

101

ditionally, the containment message for the basicStatic algorithm was
injected at 220 ticks. To aid readability of the graphs, the number of
messages sent by module 2 was divided by the number of broadcast
rounds. This means that the number of messages plotted for module
2 represents the average number of messages sent for a single broad-
cast round.

After 350 ticks, the total number of messages sent by each module
for the entire network was recorded (i.e., communication complexity)
and the maximum number of messages sent by an individual node
for each module (i.e., load balance) was recorded. This was done 100

times with randomized node positions for each network size (4,000,
6,000, 8,000, and 10,000 nodes), leading to a total of 400 experimental
runs for each tested algorithm and region configuration.

6.2.1 Simple region configuration

Looking at the simple region configuration of Figure 22, approxi-
mately 47% of the area is covered by the nine positive region com-
ponents and 53% is covered by the single negative region component.
This region configuration consists of 14 unique Voronoi region bound-
aries and seven unique Voronoi junctions.

basicStatic algorithm

Figure 36 shows the communication complexity of the basicStatic al-
gorithm on a simple region configuration. All regression curves for
each of the modules bar module 3 achieved a good fit, as evidenced
by R2 values of greater than 0.98. Module 3 achieved a comparatively
lower value of 0.91, indicating greater variation between experimental
runs.

From this graph, it can be inferred that modules 3 and 4 scaled
linearly in terms of communication complexity whereas modules 1,
2, and 5 were of polynomial order. This was expected for modules
3 and 4 as they are based on surprise flooding algorithms, which
scale linearly based on the number of unique messages that are sent.
For module 4, a single message must be sent to each node in the
network meaning that the number of messages sent will always equal
the number of nodes in the network, regardless of the configuration
of the underlying region.

For module 3, a message must be sent for each unique Voronoi
region boundary (of which there are 14 in the simple region config-
uration) to each node in the region component that contains these
boundaries. As Voronoi region boundaries are only contained within
the single negative region component for this region configuration,
and approximately half of the network’s nodes will be within this re-
gion component, it is logical that approximately seven messages were
sent for each node in the network.

102

0

50000

100000

150000

200000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 2.647x1.12, R2 = 0.9891
Module 2: y = 2.750x1.18, R2 = 0.9886
Module 3: y = 7.145x, R2 = 0.9088
Module 4: y = x, R2 = 1.0000
Module 5: y = 0.002x1.93, R2 = 0.9983

Figure 36: Scalability of communication in terms of the total number of mes-
sages sent with constant communication distance for the basic-
Static algorithm.

It was also expected that module 1 scaled as a polynomial func-
tion (i.e., O(nk)) as the worst case scenario for the number of mes-
sages sent for each region component can be calculated as ∑d

i=0(n− i),
where n is the number of nodes in the sub-network covering the re-
gion component and d is the sub-network’s diameter.

The number of messages sent by module 5 was expected to scale
linearly as it is dependent on the number of nodes changing regions,
which increases with network size. This was also the case for module
2, which is a type of surprise flooding algorithm. However, module
5 additionally involves requesting information from neighbors while
module 2 involves rebroadcasting messages from neighbors. As the
number of neighbors increases with network size due to increasing
node density, the combination of these factors results in polynomial
instead of linear growth.

In order to potentially reduce the communication complexity of
these modules due to increasing node neighborhood sizes, the next
experiment reduced the communication distance in proportion to net-
work size. This was done using the formula 10√

n
4000

where 10 is the

initial communication distance and 4000 is the smallest network size.
Originally, the average communication neighborhood was approxi-
mately 30 nodes at a network size of 4,000 nodes, increasing to ap-
proximately 75 at a network size of 10,000. By using this formula, the
level of node connectivity remains consistent across network sizes.

This reduction in communication distance in proportion to network
size has been applied to the basicStatic algorithm in Figure 37. This
graph shows a reduction to sub-polynomial communication complex-
ity for module 2 and a reduction to linear communication complexity
for module 5, leaving modules 1, 3, and 4 unchanged from Figure 36.

103

0

50000

100000

150000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 2.611x1.13, R2 = 0.9922
Module 2: y = 78.000x0.78, R2 = 0.9947
Module 3: y = 7.423x, R2 = 0.9935
Module 4: y = x, R2 = 1.0000
Module 5: y = 3.720x, R2 = 0.9937

Figure 37: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance for the ba-
sicStatic algorithm.

This was expected as the node neighborhood remained constant in
this experiment. In this graph, all modules achieved a better fit than
Figure 36, with R2 values of greater than 0.99 observed for all mod-
ules. Module 3’s increase in fit indicates that a consistent neighbor-
hood size substantially reduced the variation between experimental
runs.

In order to further reduce the amount of communication necessary
to run the algorithm, message aggregation was implemented in Fig-
ure 38. This aggregation was done by having the nodes temporarily
store all messages received during a tick, removing any duplicate
messages and then processing the messages in a batch. For exam-
ple, in module 5 of the basicStatic algorithm, nodes changing regions
broadcast a request message to their neighbors, which would then
send a response. Assuming several of a node’s neighbors change re-
gions, this would require that several of the same response message
would be sent. By first aggregating these messages, only one response
message would need to be sent.

This aggregation of messages can be taken further by comparing
the set of messages a node receives at each tick. Consider module 1,
in which a node changes its region id every time a lower id is received
from its neighbors before rebroadcasting that message. When process-
ing messages individually, a node receiving a sequence of messages
with progressively lower ids would change its region id several times
and broadcast several messages. By processing a set of messages, only
the message with the lowest region id is processed, with the others
discarded. The same type of aggregation can be used with module
2, meaning that fewer messages from both modules 1 and 2 will be
sent. This reduction in messages sent for modules 1, 2, and 5 can be

104

0

20000

40000

60000

80000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.722x1.08, R2 = 0.9851
Module 2: y = 52.477x0.76, R2 = 0.9941
Module 3: y = 7.463x, R2 = 0.9924
Module 4: y = x, R2 = 1.0000
Module 5: y = 5.327x0.91, R2 = 0.9961

Figure 38: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance and mes-
sage aggregation for the basicStatic algorithm.

observed in Figure 38. It is important to note that while message ag-
gregation produces a reduction in the number of messages sent, it
has also reduced the order of module 5’s communication complexity
to sub-polynomial.

Dividing by the number of nodes, each node sent an average of 3.3
and 3.6 messages at network sizes of 4,000 and 10,000 respectively
for module 1. This indicates that it took on average of three to four
messages for module 1 to select a unique identifier for each region.

For module 2, dividing by the number of nodes an average of 6.3
and 7.8 messages were sent at network sizes of 10,000 and 4,000 re-
spectively. This was expected as the single negative region component
has nine adjacent region components, meaning that at least nine mes-
sages must be sent by each node in the negative region component.
As the positive region components have only a single adjacent region
component, nodes in these components send only one hop message.
This would lead to an average of approximately five messages being
sent. Given that nodes changing regions may also send a message, it
is reasonable to assume that an average of approximately six to eight
messages are sent by each node per broadcast round.

From this point onward, all further algorithms were tested using
communication distances in proportion to network size in addition
to message aggregation.

Figure 39 shows the load balance of the basicStatic algorithm on a
simple region configuration. From this graph, it can be seen from the
fitted lines that while modules 1, 3, 4, and 5 exhibit approximately
constant load balance (i.e., the greatest amount of messages sent for
any node remains the same regardless of network size), module 2 ex-
hibits negative linear fit, sending at most an average of between 17.5

105

and 21.6 messages per broadcast round for network sizes of 10,000

and 4,000 respectively. This negative linear fit indicates that the great-
est amount of messages sent for any node decreases with increasing
network size. This is consistent with module 2’s sub-polynomial com-
munication complexity.

0

10

20

30

40

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 9.95e−05x + 5.836, R2 = 0.1090
Module 2: y = −6.93e−04x + 24.389, R2 = 0.6436
Module 3: y = 7.2e−05x + 14.371, R2 = 0.0649
Module 4: y = 1, R2 = NA
Module 5: y = 5.75e−05x + 6.810, R2 = 0.0988

Figure 39: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the basicStatic
algorithm.

For module 1, the average maximum number of messages sent was
between 6.2 and 6.8 messages at network sizes of 4,000 and 10,000

respectively. This indicates that the maximum diameter of the largest
region component (i.e., the single negative region component) was ap-
proximately seven. The average maximum amount of messages sent
for module 3 was between 14.7 and 15.1 messages at network sizes of
4,000 and 10,000 respectively. This was consistent with the 14 Voronoi
region boundaries detected within the single negative region com-
ponent. The extra 15th message was likely due to a node changing
regions while module 3 was running.

Module 4 sent at most one message regardless of network size,
which was expected as module 4 requires that each node send ex-
actly one message. For module 5, the average maximum number of
messages sent was between 7 and 7.4 messages at network sizes of
4,000 and 10,000 respectively. This was expected as nodes broadcast
messages for module 5 when they change regions as well as when
they receive messages from nodes that have changed regions. Given
that nodes move seven times during the running of the algorithm, it is
likely that a node has changed regions at least once and was adjacent
to regions that have changed during the seven movement rounds.

106

simpleStatic algorithm

The next algorithm tested for scalability on a simple region configu-
ration was the simpleStatic algorithm. Figure 40 shows the communi-
cation complexity of that algorithm’s modules. All regression curves
for each of the modules achieved a good fit, as evidenced by R2 val-
ues of greater than 0.98. It is important to note that modules 4 and 5

of the simpleStatic algorithm do not broadcast any messages and so
were not included in the graph. Given that modules 1 and 2 are iden-
tical for every algorithm, it is only module 3 that is of interest. From
the graph, it was inferred that module 3 scales linearly in terms of
communication complexity, sending approximately 21 messages per
node. This was expected for the simple region configuration as mes-
sages must be sent for the 14 unique Voronoi region boundaries and
seven unique Voronoi junctions.

0

50000

100000

150000

200000

250000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●

Module 1: y = 1.505x1.09, R2 = 0.9841
Module 2: y = 52.614x0.76, R2 = 0.9956
Module 3: y = 21.117x, R2 = 0.9984

Figure 40: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance and mes-
sage aggregation for the simpleStatic algorithm.

Figure 41 shows the load balance of the simpleStatic algorithm.
From the fitted lines it can be seen that module 3 exhibits approxi-
mately constant load balance, with nodes sending at most approxi-
mately 23 messages. The discrepancy between this and an expected
maximum of 21 messages can be explained by nodes on a Voronoi
junction receiving boundary and junction found messages before de-
tecting the Voronoi junction themselves. This was due to the schedul-
ing system within NetLogo, which processes the algorithm sequen-
tially on each node.

complexStatic algorithm

The final algorithm tested for scalability on a simple region configura-
tion was the complexStatic algorithm. Figure 42 shows the communi-

107

0

10

20

30

40

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●

Module 1: y = 1.08e−04x + 5.779, R2 = 0.0987
Module 2: y = −7.79e−04x + 25.046, R2 = 0.7435
Module 3: y = −7.18e−07x + 22.949, R2 = 0.0000

Figure 41: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the simpleStatic
algorithm.

cation complexity of that algorithm’s modules. All regression curves
for each of the modules achieved a good fit, as evidenced by R2 val-
ues of greater than 0.98. Given that modules 1 and 2 are identical for
every algorithm, only modules 3–5 are of interest.

0

30000

60000

90000

120000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.522x1.09, R2 = 0.9865
Module 2: y = 56.926x0.75, R2 = 0.9956
Module 3: y = 11.403x, R2 = 0.9973
Module 4: y = 1.000x, R2 = 1.0000
Module 5: y = 1.339x0.92, R2 = 0.9907

Figure 42: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance and mes-
sage aggregation for the complexStatic algorithm.

From the graph, it was inferred that module 3 scales linearly in
terms of communication complexity, sending approximately 11.4 mes-
sages per node. This was expected for the simple region configuration
as the 21 unique Voronoi region boundaries and Voronoi junctions
are only broadcast throughout the single negative region component,
which will contain approximately half of a network’s nodes.

108

Recall from module 4’s code that all nodes within a network must
broadcast a maptree message consisting of the portion of the simpli-
fied maptree table and label table that is detected within their current
region component. This will not be done if that region component de-
tects no Voronoi region boundaries (i.e., nodes within the positive re-
gion components). Additionally, nodes receiving a maptree message
containing new information will store and rebroadcast that informa-
tion; therefore the nodes in the positive region components will also
send a maptree message, meaning that exactly one message is sent
for every node in the network.

From the graph, it was inferred that module 5 is of sub-polynomial
order. Module 5 only sends request messages when a node enters
a new region if module 4 has not yet run. In this case, an aver-
age of between 0.6 and 0.7 messages per node were sent at network
sizes of 10,000 and 4,000 respectively. Given that nodes will only re-
spond to these request messages if they are in the same region and
have already stored some simplified maptree entries, only nodes en-
tering the negative region component will receive responses. While
this would typically result in linear order growth, message aggrega-
tion (from proportionally greater nodes being within communication
range of multiple nodes sending request messages) has caused sub-
polynomial growth.

0

10

20

30

40

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.5e−04x + 5.464, R2 = 0.1895
Module 2: y = −7.42e−04x + 24.815, R2 = 0.7297
Module 3: y = 1.06e−05x + 22.851, R2 = 0.0070
Module 4: y = 1, R2 = NA
Module 5: y = 2.04e−05x + 3.817, R2 = 0.0564

Figure 43: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the com-
plexStatic algorithm.

Figure 43 shows the load balance of the complexStatic algorithm,
with modules 3–5 exhibiting constant load balance. From the fitted
lines it can be seen that, like the simpleStatic algorithm, module 3

sends at most approximately 23 messages regardless of network size.
Module 4 sends precisely one message per node, which was expected
given that only one region (the single negative region component)

109

produces maptree records. Module 5 sends at most approximately
four messages regardless of network size. Given that nodes only send
request messages before module 4 has run, and that nodes can move
at most four times before module 4 has run, it was expected that
nodes are capable of sending at most four messages.

6.2.2 Complex region configuration

Looking at the complex region configuration (Figure 25), approxi-
mately 51% of the area is covered by one of the seven positive region
components and 49% is covered by one of the three negative region
components. This region configuration consists of 11 unique Voronoi
region boundaries, with nine of these boundaries located within the
negative region components and two located within the positive re-
gion components. This region configuration additionally consists of
three unique Voronoi junctions, all of which are located within a neg-
ative region component.

basicStatic algorithm

Figure 44 shows the communication complexity of the basicStatic al-
gorithm running on a complex region configuration. From this graph,
it can be inferred that modules 3–5 scaled linearly in terms of com-
munication complexity, whereas modules 1 and 2 were of polynomial
and sub-polynomial order respectively. It is important to note that
while the number of messages sent differs between that of the basic-
Static algorithm running on a simple region configuration, the orders
of the modules are unchanged, indicating that region configuration
does not affect scalability of the basicStatic algorithm.

0

15000

30000

45000

60000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.314x1.10, R2 = 0.9899
Module 2: y = 26.802x0.82, R2 = 0.9932
Module 3: y = 3.837x, R2 = 0.9965
Module 4: y = x, R2 = 1.0000
Module 5: y = 5.494x0.90, R2 = 0.9962

Figure 44: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance and mes-
sage aggregation for the basicStatic algorithm.

110

Module 1 sent overall fewer messages for the complex region con-
figuration than the simple region configuration. Dividing by the num-
ber of nodes, each node sent an average of 3 and 3.3 messages at net-
work sizes of 4,000 and 10,000 respectively, as opposed to 3.3 and 3.6
for the simple region configuration. This reduction was due to the
complex region configuration having region components with over-
all smaller sizes. Recall that the simple region configuration has a
single negative region component whereas the complex region con-
figuration has multiple negative region components. This reduction
in region component size resulted in a corresponding reduction in
the diameter of the sub-network that covers the region component.

Module 2 also sent overall fewer messages for the simple region
configuration. Dividing by the number of nodes, an average of 5.1
and 6 messages were sent per broadcast round at network sizes of
10,000 and 4,000 respectively, as opposed to the simple region con-
figuration’s 6.3 and 7.8 messages. This decrease was due to the com-
plex region configuration having a greater number of adjacent region
components (with the complex region configuration having nine adja-
cent region components and the simple region configuration having
only eight), but spread across four region components. Specifically,
the largest negative region component has six adjacent region com-
ponents, three other region components have two, and the remaining
six have a single adjacent region component. This is in contrast to the
simple region configuration’s single negative region component hav-
ing nine adjacent region components, with the remaining nine region
components having a single adjacent region component. Given that
nodes changing regions may also send a message, it is reasonable to
assume that an average of approximately five to six messages are sent
by each node per broadcast round.

Like the previous modules, module 3 sent overall fewer messages,
sending approximately 3.8 messages per node as opposed to the sim-
ple region configuration’s 7.5 messages per node. This was due to the
complex region configuration having overall fewer Voronoi region
boundaries (11 as opposed to the simple region configuration’s 14),
and these messages being restricted to overall smaller region com-
ponents. Specifically, the largest negative region component, (which
takes up 44% of the region) contains eight Voronoi boundaries while
three other region components, which take up a combined 19% of
the region, contain one Voronoi boundary each. Given that the re-
maining region components contain no Voronoi boundaries, it can be
calculated that approximately 3.5 messages should be sent per node.
This number assumes a perfectly even distribution of nodes, so an
average of 3.8 messages is reasonable.

Modules 4 and 5 remain unchanged from the simple region con-
figuration with the same constant factors. For module 4, this was
due to each node sending a single message regardless of region con-

111

figuration. For module 5, this was due to approximately the same
proportion of nodes changing region components.

0

5

10

15

20

25

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.26e−04x + 5.299, R2 = 0.1849
Module 2: y = 7.87e−05x + 13.336, R2 = 0.1004
Module 3: y = 2.85e−05x + 8.753, R2 = 0.0898
Module 4: y = 1, R2 = NA
Module 5: y = 4.4e−05x + 6.987, R2 = 0.0465

Figure 45: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the basicStatic
algorithm.

Figure 45 shows the load balance of the basicStatic algorithm on a
complex region configuration. From this graph, it can be seen from
the fitted lines that all modules exhibit an approximately constant
load balance (i.e., the greatest amount of messages sent for any node
remains the same regardless of network size), which is in contrast to
module 2 for the simple region configuration, which exhibited nega-
tive linear fit. This change in load balance for module 2 was due to
the complex region configuration having a greater number of adja-
cent region components but overall smaller region component sizes.

For module 1, the average maximum number of messages sent was
between 5.8 and 6.6 messages at network sizes of 4,000 and 10,000 re-
spectively. This was in contrast to the 3.3 and 3.6 messages sent for the
simple region configuration, indicating that the maximum diameter
of the largest region component (i.e., the single negative region com-
ponent) was smaller, with a size of approximately four as opposed to
the simple region configuration’s seven.

The average maximum amount of messages sent for module 3 was
approximately nine messages, which was consistent with the eight
Voronoi region boundaries detected within the largest negative re-
gion component. The extra ninth message was likely due to a node
changing regions while module 3 was running. Module 4 sent at most
one message regardless of network size, which was again expected as
module 4 requires that each node send exactly one message.

For module 5, the average maximum number of messages sent was
between 7.2 and 7.4 messages at network sizes of 4,000 and 10,000

respectively. This was almost identical to the simple region configura-

112

tion, again indicating that approximately the same number of nodes
changed region components.

complexStatic algorithm

The next algorithm tested for scalability on a complex region config-
uration was the complexStatic algorithm. Figure 46 shows the com-
munication complexity of that algorithm’s modules. All regression
curves for each of the modules achieved a good fit, as evidenced by
R2 values of greater than 0.98. Given that modules 1 and 2 are identi-
cal for every algorithm, it is only modules 3–5 that are of interest.

0

15000

30000

45000

60000

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.384x1.10, R2 = 0.9907
Module 2: y = 31.184x0.80, R2 = 0.9969
Module 3: y = 5.463x, R2 = 0.9983
Module 4: y = 4.000x, R2 = 1.0000
Module 5: y = 1.538x0.91, R2 = 0.9907

Figure 46: Scalability of communication in terms of the total number of mes-
sages sent with proportional communication distance and mes-
sage aggregation for complexStatic algorithm.

From the graph, it was again inferred that module 3 scaled lin-
early in terms of communication complexity, sending approximately
5.5 messages per node. This was expected as each Voronoi region
boundary and Voronoi junction is only broadcast throughout the re-
gion component they are contained within. Specifically, the largest
negative region component (which takes up 44% of the region) con-
tains 11 Voronoi boundaries and junctions, while three other region
components (which take up a combined 19% of the region) contain
only one Voronoi boundary each. Given that the remaining region
components contain no region boundaries, it can be calculated that
approximately 4.8 messages should be sent per node. As nodes on
a Voronoi boundary will additionally broadcast a junction request
message, an average of 5.5 messages is reasonable.

For module 4, all nodes within a network must broadcast a map-
tree message consisting of the portion of the simplified maptree ta-
ble and label table that is detected within their current region com-
ponent. This will not be done if that region component detects no
Voronoi region boundaries. Additionally, nodes receiving a maptree

113

message containing new information will store and rebroadcast that
information. Given that nodes within four of the region components
will have detected unique simplified maptree components, each node
must send exactly four messages.

Module 5 remained unchanged from the simple region configura-
tion, due to approximately the same proportion of nodes changing
region components.

0

5

10

15

20

25

0 2500 5000 7500 10000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●
●

Module 1: y = 1.48e−04x + 5.231, R2 = 0.2262
Module 2: y = 3.65e−05x + 13.757, R2 = 0.0335
Module 3: y = 13, R2 = NA
Module 4: y = 4, R2 = NA
Module 5: y = 7.57e−06x + 3.933, R2 = 0.0211

Figure 47: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the com-
plexStatic algorithm.

Figure 47 shows the load balance of the complexStatic algorithm on
the complex region configuration. From the fitted lines it can be seen
that module 3 sends at most 13 messages regardless of network size.
Like the simpleStatic algorithm, the discrepancy between this and an
expected maximum of 11 messages can be explained by nodes on a
Voronoi junction receiving boundary and junction found messages be-
fore detecting the Voronoi junction themselves due to the scheduling
system within NetLogo.

Module 4 sends precisely four message per node, which was ex-
pected given that only four region components produce unique map-
tree records. Like the simple region configuration, module 5 sends
at most approximately 4 messages regardless of network size. Again,
given that nodes may only send request messages before module 4

has run, and that nodes can move at most four times before module
4 has run, it was expected that nodes are capable of sending at most
4 messages.

6.3 scalability of dynamic regions

The algorithms tested in this section ran on either the simple region
configuration of Figure 55 or the complex region configuration of

114

Figure 56. In either case, this produced a simulation size of 40×32

patches. The communication distance of the nodes was reduced in
proportion to the size of the network, resulting in a communication
distance of 3 patch widths for networks with 2,000 nodes and 1.5 for
networks with 8,000 nodes. This gave nodes an average communica-
tion neighborhood of approximately 44 nodes.

Both the simple and complex regions changed their internal con-
figuration every 100 ticks. It is important to note that during these
changes, the boundaries of the region components moved at most a
distance of one patch width. Recall from the description of the simple-
Dynamic algorithm’s module 5 (subsection 5.1.6) that changes to the
boundaries of the underlying region components should not spon-
taneously exceed the communication distance of the nodes due to
the potential detection of erroneous appearance and disappearance
events. Given that the minimum communication distance is 1.5 patch
widths, this type of error could not occur.

Node movement occurred every 50 ticks with a movement distance
of 0.5 patches, starting at 115 ticks. The broadcast timer was set to 25,
starting at 100 ticks. This meant that module 2 was rerun twice as
often as the nodes moved. The region timer was set to 100, giving 100

ticks for module 1 to initialize the network. The regionChange timer
was reset after five ticks, meaning that any node that had changed
regions within the last five ticks was considered to have recently
changed its region. Recall that all other timers are reset for the dy-
namic algorithms, allowing for the algorithms to detect changes to
the structure of the underlying region. These timers were all reset to
100 ticks, meaning that the algorithms were capable of detecting any
salient changes that occur over a period of 100 ticks or more.

The topologyChange timer was initially set to 110, with the split
timer set for 25 ticks later at 135. This gave 25 ticks for the algorithms
to detect if a region component had split. The adjacency timer was
initially set to 160, giving 25 ticks for any split region components to
assign themselves new region component ids. The maptree timer was
set for 25 ticks later (at 185), giving 25 ticks for module 3 to complete
before module 4 began.

Upon completion, the total number of messages sent by each mod-
ule for the entire network was recorded (i.e., communication com-
plexity) and the maximum number of messages sent by an individ-
ual node for each module (i.e., load balance) was recorded. This was
done 100 times with randomized node positions for each network
size (2,000, 4,000, 6,000, and 8,000 nodes), leading to a total of 400 ex-
perimental runs for each tested algorithm and region configuration.

115

6.3.1 Simple region configuration

Looking at the simple region configuration of Figure 55, between 40%
and 45% of the area is covered by between three and four positive
region components, with the remainder covered by a single negative
region component. The following topological events are expected to
be detected by the algorithms;

• Split in the large region component between 200 and 300 ticks,

• Unenclose transition for the small region component between
400 and 500 ticks,

• Small region component disappears at 800 ticks,

• Small region component appears at 900 ticks,

• Enclose transition for the small region component between 1,200

and 1,300 ticks, and

• Merge of the large and medium sized region components be-
tween 1,400 and 1,500 ticks.

Note that time ranges have been provided for all events bar the ap-
pearance and disappearance of regions, which have been given pre-
cise times. This is due to differences in communication distance for
varying network sizes resulting in differing network granularity. For
example, while two region components have clearly split at 200 ticks,
the gap between the regions is only two patches wide. Given that the
smallest network has a communication distance of three patch widths,
these two region components may have nodes that are in direct com-
munication and therefore consider the parts to be a single component.
The largest network however has a communication distance of 1.5
patch widths, meaning that the split region components have no di-
rect communication and will therefore detect the split event. Tables 17

and 18 show example dynamic simplified maptree and change tables
that would be produced by the simpleDynamic algorithm. In order to
detect all changes in the region’s configuration, algorithms were run
for 1,700 ticks.

simpleDynamic algorithm

The first algorithm tested for scalability on a simple region configu-
ration was the simpleDynamic algorithm. Figure 48 shows the com-
munication complexity of that algorithm’s modules. All regression
curves for each of the modules achieved a good fit, as evidenced by
R2 values of greater than 0.99. It is important to note that in the dy-
namic algorithms, module 4 does not broadcast any messages, and
so was not included in any of the graphs of this section.

116

0 × 100

5 × 105

1 × 106

1.5 × 106

2 × 106

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●

Module 1: y = 1.412x1.09, R2 = 0.9945
Module 2: y = 325.601x0.95, R2 = 0.9996
Module 3: y = 86.122x, R2 = 0.9969
Module 5: y = 109.098x1.03, R2 = 0.9998

Figure 48: Scalability of communication in terms of the total number of mes-
sages sent for the simpleDynamic algorithm.

Given that modules 1 and 2 run identically for every algorithm,
respective polynomial and sub-polynomial orders of module 1 and
2’s are expected. Dividing by the number of nodes, each node sent an
average of 2.8 and 3.2 messages at network sizes of 2,000 and 8,000

respectively for module 1. This indicates that it took an average of
two to three messages for module 1 to select a unique identifier for
each region.

Dividing by the 68 broadcast rounds and number of nodes, each
node sent an average of 3.1 and 3.3 messages at network sizes of 8,000

and 2,000 respectively for module 2. This was expected as the single
negative region component has between three and four adjacent re-
gion components, meaning that at least three to four hop messages
must be sent by each node in the negative region component. As the
positive region components have only a single adjacent region com-
ponent, nodes in those components may send only one hop message.
This would lead to an average of approximately 2.3 messages being
sent. Given that nodes changing regions may also send a message, it
is reasonable to assume that an average of approximately three mes-
sages are sent by each node per broadcast round.

From the graph, it was inferred that module 3 scales linearly in
terms of communication complexity, sending approximately 86 mes-
sages per node. This was expected for the simple region configuration
as for the 17 times module 3 is run, there are a total of between 62

and 68 Voronoi region boundaries and between 18 and 22 Voronoi
junctions detected. Like the simpleStatic algorithm, these Voronoi re-
gion boundaries and Voronoi junctions are broadcast throughout the
entire network, leading to a total of between 80 and 90 messages
sent per node for module 3. Where a network falls within this range
depends on network granularity, with smaller network sizes having

117

smaller communication distances and therefore being able to detect
topological changes as soon as they occur.

It was also expected that module 5 was of polynomial order as
it detects the splitting of region components by calculating split ids
(sid) for each region component. Like module 1, this is done by us-
ing leader election. Recall that the worst case scenario for the num-
ber of messages sent for each region component can be calculated
as ∑d

i=0(n − i) where n is the number of nodes in the sub-network
covering the region component and d is the sub-network’s diameter.

Dividing by the 17 times module 5 is run and by number of nodes,
each node sent an average of 8.1 and 8.4 messages at network sizes
of 2,000 and 8,000 respectively. Considering that the split detection
runs identically to module 1, it is reasonable to assume that approx-
imately three of these messages are due to split detection. Module
5 also has each node broadcast a merge detection message, bringing
the total accountable messages up to four. Module 5 also broadcasts
a message throughout the network every time a region appearance,
split, or merge is detected. Considering that this happens three times
during the 17 times module 5 is run, this brings the total number of
messages accounted for up to 5.2. The remainder of the messages can
be accounted for by nodes sending request and response messages
when a node enters a new region.

0

100

200

300

400

500

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●

Module 1: y = 1.48e−04x + 4.139, R2 = 0.3577
Module 2: y = 6.39e−03x + 303.307, R2 = 0.8945
Module 3: y = −1.01e−04x + 109.178, R2 = 0.0049
Module 5: y = 2e−03x + 152.159, R2 = 0.6055

Figure 49: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the simpleDy-
namic algorithm.

Figure 49 shows the load balance of the simpleDynamic algorithm
on the simple region configuration. From the fitted lines it can be seen
that while module 3 exhibits constant load balance (i.e., the greatest
amount of messages sent for any node remains the same regardless
of network size), modules 1, 2, and 5 exhibit a slightly positive lin-
ear fit. This was expected for modules 1 and 5 as their communica-

118

tion complexity is of polynomial order. For module 2, dividing by
the 68 broadcast rounds produces the average maximum number of
messages sent by any node in the network per broadcast round. This
number of messages was 4.6 for network sizes of 2,000 and 5.2 for net-
work sizes of 8,000. This load balance is consistent with an average
number of approximately three messages being sent.

For module 1, the average maximum number of messages sent was
between 4.4 and 5.3 messages at network sizes of 2,000 and 8,000 re-
spectively. This indicates that the maximum diameter of the largest
region component (i.e., the single negative region component) was
approximately five. Dividing by the 17 times module 3 is run, the
average maximum number of messages sent by any node was 6.4.
This load balance was also contestant with module 3’s communica-
tion complexity, which showed an average number of approximately
five messages being sent each time module 3 was run. For module 5,
the average maximum number of messages sent was between 9.2 and
9.9 messages at network sizes of 2,000 and 8,000 respectively. This
was again consistent with module 5’s communication complexity of
approximately eight messages.

complexDynamic algorithm

The second algorithm tested for scalability on a simple region con-
figuration was the complexDynamic algorithm. Figure 50 shows the
communication complexity of that algorithm’s modules. Looking at
the graph, it can be seen that the regression curves for each of the
modules are almost identical to that of the simpleDynamic algorithm.
This is because modules 1, 2, and 5 are identical and module 4 sends
no messages. The key difference between module 3 for the simple-
Dynamic and complexDynamic algorithms is that the complexDy-
namic’s module 3 encloses a region component id and a sensed value
in its boundary message. As this does not affect the amount of mes-
sages sent, both module 3s broadcast the same number of messages.

119

0 × 100

5 × 105

1 × 106

1.5 × 106

2 × 106

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●

Module 1: y = 1.484x1.08, R2 = 0.9953
Module 2: y = 323.716x0.95, R2 = 0.9996
Module 3: y = 86.280x, R2 = 0.9971
Module 5: y = 109.231x1.03, R2 = 0.9998

Figure 50: Scalability of communication in terms of the total number of mes-
sages sent for the complexDynamic algorithm.

Figure 51 shows the load balance of the complexDynamic algo-
rithm on the simple region configuration. Like Figure 50, the regres-
sion curves for each of the modules are almost identical to that of the
simpleStatic algorithm.

0

100

200

300

400

500

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●

Module 1: y = 1.49e−04x + 4.168, R2 = 0.3446
Module 2: y = 6.56e−03x + 302.808, R2 = 0.8862
Module 3: y = −7.97e−05x + 108.840, R2 = 0.0031
Module 5: y = 2.1e−03x + 151.935, R2 = 0.6305

Figure 51: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the complexDy-
namic algorithm.

6.3.2 Complex region configuration

Looking at the simple region configuration of Figure 56, between 40%
and 46% of the area is covered by between 3 and 4 positive region
components, with the remainder covered by one or two negative re-
gion components. The following topological events are expected to

120

be detected by the algorithms (with only positive region components
listed);

• Self-split of the large region component and release transition
for the small region component between 200 and 400 ticks,

• Split in the large region component between 500 and 600 ticks,

• Unenclose transition for the small region component between
900 and 1000 ticks,

• Small region component disappears at 1300 ticks,

• Small region component appears at 1400 ticks,

• Enclose transition for the small region component between 1700

and 1800 ticks,

• Merge of the large and medium sized region components be-
tween 2100 and 2200 ticks, and

• Self-merge of the large region component and confine transition
for the small region component between 2300 and 2500 ticks.

Again note that time ranges have been provided for some events
due to differences in communication distance for varying network
sizes resulting in differing network granularity. Tables 19, 20, and 21

show example dynamic simplified maptree, change and label tables
that would be produced by the complexDynamic algorithm. In or-
der to detect all changes in the complex region’s configuration, the
algorithm was run for 2,600 ticks.

complexDynamic algorithm

Given that the only algorithm capable of successfully detecting changes
to a complex region configuration was the complexDynamic algo-
rithm, this will be the only algorithm tested in this section. Figure
52 shows the communication complexity of that algorithm’s modules.
All regression curves for each of the modules achieved a good fit,
achieving R2 values of greater than 0.99. Like the complexStatic al-
gorithm, while the number of messages sent differs between that of
the complexDynamic algorithm running on the simple and dynamic
region configurations, the orders of the modules are unchanged. This
indicates that region configuration and complexity do not affect the
scalability of the algorithm.

Module 1 sent overall fewer messages for the complex region con-
figuration than the simple region configuration. Dividing by the num-
ber of nodes, each node sent an average of 2.6 and 3 messages at net-
work sizes of 2,000 and 8,000 respectively, as opposed to 2.8 and 3.2
for the simple region configuration. This reduction was due to the
complex region configuration’s initial configuration having region

121

0 × 100

1 × 106

2 × 106

3 × 106

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt

●
●
●
●

Module 1: y = 1.322x1.09, R2 = 0.9964
Module 2: y = 455.365x0.96, R2 = 0.9998
Module 3: y = 122.444x, R2 = 0.9981
Module 5: y = 166.831x1.04, R2 = 0.9999

Figure 52: Scalability of communication in terms of the total number of mes-
sages sent for the complexDynamic algorithm.

components with overall smaller size. Recall that the simple region
configuration has a single negative region component whereas the
complex region configuration has two. This slight reduction in region
component size resulted in a corresponding reduction in the diameter
of the sub-network that covers the region component.

Module 2 also sent approximately the same number of messages
for the simple region configuration. Dividing by the 104 broadcast
rounds and number of nodes, each node sent an average of 3.1 and
3.2 messages at network sizes of 8,000 and 2,000 respectively as op-
posed to the simple region configuration’s 3.1 and 3.3 messages. This
was expected as like the simple region configuration, there is a single
negative region component that has between three and four adjacent
region components for most of the simulation’s runtime.

Dividing by the number of nodes, module 3 sends approximately
122 messages per node. This was expected for the complex region
configuration as, for the 26 times module 3 is run, there are a total of
between 121 and 133 Voronoi region boundaries junctions detected.
Again, where a network falls within this range depends on network
granularity, with smaller network sizes having smaller communica-
tion distances and therefore being able to detect topological changes
as soon as they occur.

For the complex region, module 5 sent an overall greater number
of messages when compared to the simple region configuration. Di-
viding by the 26 times module 5 is run and by number of nodes, each
node sent an average of 8.7 and 9.2 messages at network sizes of 2,000

and 8,000 respectively, as opposed to the 8.1 and 8.4 messages sent for
the simple region configuration. This increase in the number of mes-
sages sent is likely due to the combination of the additional split and
merge events over the simple region configuration and more nodes

122

changing regions when the contains relation is present. More nodes
are likely to change regions during the contains relation as that region
configuration has a larger proportion of region component bound-
aries.

0

200

400

600

800

0 2000 4000 6000 8000
Network size

M
es

sa
ge

s
se

nt
●
●
●
●

Module 1: y = 1.45e−04x + 3.993, R2 = 0.3530
Module 2: y = 7.88e−03x + 451.113, R2 = 0.9174
Module 3: y = −3.77e−04x + 151.291, R2 = 0.0463
Module 5: y = 3.1e−03x + 235.517, R2 = 0.6999

Figure 53: Scalability of communication in terms of worst case (maximum)
load (number of messages sent) for any node for the complexDy-
namic algorithm.

Figure 53 shows the load balance of the complexDynamic algo-
rithm on the complex region configuration. From the fitted lines it
can be seen that, like the simple region configuration, while module
3 exhibits constant load balance, modules 1, 2, and 5 exhibit a slightly
positive linear fit. This was again expected for modules 1 and 5 as
their communication complexity is of polynomial order. For module
2, dividing by the 104 broadcast rounds produces an average max-
imum number of messages per broadcast round of 4.5 for network
sizes of 2,000 and 4.9 for network sizes of 8,000, as opposed to the
simple region configuration’s 4.6 and 5.2 messages sent. This load
balance is again consistent with an average number of approximately
three messages being sent.

For module 1, the average maximum number of messages sent was
between 4.3 and 5.2 messages at network sizes of 4,000 and 10,000

respectively. This was again slightly smaller than the 4.4 and 5.3 mes-
sages sent for the simple region configuration, indicating that the
maximum diameter of the largest region component (i.e., the largest
negative region component) was slightly smaller.

Dividing by the 26 times module 3 is run, the average maximum
number of messages sent by any node was 5.8 in contrast to the sim-
ple region configuration’s 6.4. This load balance was also contestant
with module 3’s communication complexity, which showed an av-
erage number of approximately five messages being sent each time
module 3 was run. For module 5, the average maximum number of

123

messages sent was between 9.3 and 10 messages at network sizes of
2,000 and 8,000 respectively, which was slightly larger than the simple
region configuration’s 9.2 and 9.9 messages sent. This was again con-
sistent with module 5’s communication complexity of approximately
nine messages.

6.4 summary

This chapter has presented experimental evaluations of the five algo-
rithms presented in Chapters 4 and 5. These algorithms have been
evaluated in terms of both veracity and scalability.

Section 6.1 evaluated the veracity of modules 1 and 2. As all of the
algorithms require correct information from these two modules to
construct their specific formal models, meeting the necessary require-
ments for modules 1 and 2 to perform correctly will produce correct
results for the entirety of the algorithms.

Module 1 requires that there is at least one node in each region
component, and that all nodes within that region component form a
connected sub-graph. Additionally, module 1 requires that the com-
munication distance of the nodes is smaller than the smallest distance
between any two positive or any two negative region components.
This requirement is to ensure that two separate regions are not falsely
counted as one. The results of Figure 34 confirmed these findings.

Module 5 of each algorithm is responsible for swapping a node’s
region component id and Voronoi region component id when it en-
ters a new region component. For a correct swap, that node must
have the correct ids prior to changing regions. For this to occur the
Voronoi boundaries must be in the correct location, which for a mo-
bile geosensor network is done by periodically rerunning module 2.
How often module 2 must be run can be determined by the formula
b ≤ d

2s where d is the shortest distance between any two positive or
negative region components, s is the maximum speed of the nodes,
and b is the broadcast interval of module 2. These findings were con-
firmed by the experiment shown in Figure 35.

The findings for modules 1 and 2 were used when implementing
the scalability experiments of sections 6.2 and 6.3, ensuring that cor-
rect results would be obtained. Table 12 shows a summary of the
communication complexity of the algorithms tested on static region
configurations (i.e., the basicStatic, simpleStatic, and complexStatic
algorithms).

From this table, it can be seen that all regression curves for each of
the algorithm’s modules achieved a good fit, as evidenced by R2 val-
ues of greater than 0.98. Looking at the regression curves, only mod-
ule 1 is of polynomial order, with all other modules being of either
linear or sub-polynomial order. This is because module 1’s broadcast-
ing characteristics are based on leader election algorithms whereas

124

Simple region Complex region

Module Regression R2 Regression R2

ba
si

cS
ta

ti
c

1. y = 1.722x1.08 0.9851 y = 1.314x1.10 0.9899

2. y = 57.447x0.76 0.9941 y = 26.802x0.82 0.9932

3. y = 7.463x 0.9924 y = 3.837x 0.9965

4. y = 1.000x 1.0000 y = 1.000x 1.0000

5. y = 5.327x0.91 0.9961 y = 5.494x0.90 0.9962

si
m

pl
eS

ta
ti

c 1. y = 1.505x1.09 0.9841

2. y = 52.614x0.76 0.9956

3. y = 21.117x 0.9984

4.

5.

co
m

pl
ex

St
at

ic 1. y = 1.522x1.09 0.9865 y = 1.384x1.10 0.9907

2. y = 56.926x0.75 0.9956 y = 31.184x0.80 0.9969

3. y = 11.403x 0.9973 y = 5.463x 0.9983

4. y = 1.000x 1.0000 y = 4.000x 1.0000

5. y = 1.339x0.92 0.9907 y = 1.538x0.91 0.9907

Table 12: Scalability of static algorithms in terms of the total number of mes-
sages sent by each module. Regression curve for module 2 shows
the number of messages sent per broadcast round.

modules 2–4 are based on surprise flooding and module 5 is based
on requests from and responses to nodes that are changing regions.

It is important to note that while the number of messages sent dif-
fers between the simple region configuration and the complex region
configuration for the same algorithm, the order of the modules is
unchanged. This consistency indicates that region configuration does
not affect scalability of the static algorithms.

Given that modules 1 and 2 are the same for all algorithms, these
two modules can be ignored when comparing the scalability of two
algorithms. Starting with the simple region configuration, the ba-
sicStatic algorithm sends an average of approximately 11 messages
per node whereas the simpleStatic algorithm sends approximately
21 and the complexStatic sends approximately 13. While this would
indicate that the basicStatic algorithm is the best for use on a sim-
ple region configuration, given that only the simpleStatic and com-
plexStatic algorithms are capable of distinguishing between engulfs
and surrounds relations, the complexStatic algorithm is of greater
value.

It is interesting to note that the simpleStatic algorithm performed
far worse than the complexStatic algorithm, sending almost double
the number of messages per node. This is due to the complexStatic al-

125

gorithm confining its module 3 messages to individual region compo-
nents. It is clear from this that computing segments of the simplified
maptree in individual region components and then broadcasting the
completed segments throughout the network has lead to gains in effi-
ciency. This leads to the conclusion that the complexStatic algorithm
is the best for any static region configuration.

Table 13 shows a summary of the communication complexity of the
algorithms tested on dynamic region configurations (i.e., the simple-
Dynamic and complexDynamic algorithms).

Simple region Complex region

Module Regression R2 Regression R2

si
m

pl
eD

yn
am

ic 1. y = 1.412x1.09 0.9945

2. y = 325.601x0.95 0.9996

3. y = 86.122x 0.9969

4.

5. y = 109.098x1.03 0.9998

co
m

pl
ex

D
yn

am
ic

1. y = 1.484x1.08 0.9953 y = 1.322x1.09 0.9964

2. y = 323.716x0.95 0.9996 y = 455.365x0.96 0.9998

3. y = 86.280x 0.9971 y = 122.444x 0.9981

4.

5. y = 109.231x1.03 0.9998 y = 166.831x1.04 0.9999

Table 13: Scalability of dynamic algorithms in terms of the total number of
messages sent by each module.

From this table it can be seen that all regression curves for each
of the algorithm’s modules achieved a good fit, as evidenced by R2

values of greater than 0.99. Looking at the regression curves, modules
1 and 5 are of polynomial order, with modules 2 and 3 being of sub-
polynomial and linear order respectively. This is again because the
broadcasting characteristics of modules 1 and 5 are at least in part
based on leader election algorithms, whereas modules 2 and 3 are
based on surprise flooding algorithms.

As was seen in the static regions, while the number of messages
sent differs between the simple region configuration and the complex
region configuration, the orders of the modules are unchanged. This
consistency indicates that region configuration does not affect scala-
bility of the dynamic algorithms.

Looking at the simple region configuration, it can be seen that the
regression curves for each of the modules are almost identical for
the simpleDynamic and complexDynamic and algorithms. This is be-
cause modules 1, 2, and 5 are identical and module 4 sends no mes-
sages. Recall that the key difference between module 3 for the simple-
Dynamic and the complexDynamic algorithms is that the complexDy-

126

namic’s module 3 encloses a region component id and a sensed value
in its boundary message. As this does not affect the amount of mes-
sages sent, both module 3s broadcast the same number of messages.
Given this information, this leads to the conclusion that the complex-
Dynamic algorithm is the best for any dynamic region configuration.

127

7
C O N C L U S I O N S

This thesis has demonstrated how regions with complex internal struc-
tures can be qualitatively described. Additionally, such regions may
be dynamic in nature, in that they can reconfigure their internal struc-
ture over time. This research has proposed in-network, decentralized
algorithms that qualitatively describe the internal structure of and
changes to these regions. Unlike previous work, these algorithms are
able to operate in networks of mobile geosensor nodes with no access
to coordinate information. These algorithms make use of qualitative
spatial reasoning and the simplified maptree formal model to effi-
ciently record only salient changes to the internal structure of these
regions.

7.1 results and major findings

This thesis has investigated the monitoring of both static and dynamic
region configurations that have a simple or complex internal struc-
ture. To do so, a collection of five decentralized algorithms were de-
signed and tested. The major findings of this research are as follows:

Algorithm efficiency

Firstly, the veracity of modules 1 and 2, which were the same for all al-
gorithms, was investigated. This was because if the necessary require-
ments for modules 1 and 2 to perform correctly were met, the rest
of the algorithm would produce correct results. These experiments
found that the criteria of sufficient node density, broadcast interval,
and a communication distance that is smaller than the minimum dis-
tance between any two positive or negative region components would
produce correct results. These three factors would be dependent on
the characteristics of the phenomena being monitored.

The veracity experiments additionally illustrated the type of trade-
offs that occur when designing decentralized algorithms, specifically
between network size and communication distance. For example, a
small network size and a large communication distance can produce
the same level of accuracy as a large network with a small commu-
nication distance. Given that the maximum communication distance
is restricted by region configuration, and that transmission costs in-
crease rapidly with communication distance, it would be more cost
effective to have a large network with a small communication dis-
tance.

129

For the efficiency of the static algorithms, it was found that the com-
plexStatic algorithm provided the best balance of information detail
and algorithm efficiency for static regions, whereas for the dynamic
algorithms it was found that both algorithms performed identically.
Given that the simpleDynamic algorithm is only capable of function-
ing on regions with a simple internal configuration, the complexDy-
namic algorithm is the better choice for dynamic regions.

It was found that all modules of the algorithms exhibited either sub-
polynomial, linear, or weakly polynomial scalability (with the worst
case being O(n1.1)). The order of scalability produced was due to
the type of decentralized algorithm the module was based on, with
leader election based algorithms producing weakly polynomial scal-
ability (e.g., module 1), and surprise flooding algorithms producing
sub-polynomial or linear scalability (e.g., modules 2 and 3 respec-
tively for any algorithm).

In addition to algorithm scalability, it is important to consider the
costs of periodically running the modules, in particular module 5 of
the dynamic algorithms, which exhibits weakly polynomial scalabil-
ity. Given that the nodes in a dynamic geosensor network have lim-
ited battery capacity, such modules can only be run a certain number
of times before the battery is depleted. In the interests of extending
network run-time, it is therefore important to consider how often par-
ticular modules should be run. For the dynamic algorithms, such a
trade off would then be between the temporal granularity of the the
records and the network’s lifespan.

Qualitative relations

In order to store the qualitative internal structure of a region, the
simplified maptree formal model was used. The simplified maptree
was based on the standard maptree [28], which is a black-white edge
labeled tree based on combinatorial maps and containment trees ca-
pable of uniquely representing the topological structure of regions.

Instead of storing the relations between region components, the
simplified maptree stores Voronoi region components that are in-
duced by region components, of which there is a 1:1 mapping. Addi-
tionally, the simplified maptree dispenses with unique edge identifi-
cation and the boundary cycles of region components, instead storing
only region component adjacency.

Building on the simplified maptree, the following three qualitative
spatial relations were produced:

• Contains, where a single region component completely encloses
another region component,

• Engulfs, where a single region component partially encloses an-
other region component, and

130

• Surrounds, where multiple region components partially enclose
another region component.

By extending the simplified maptree to account for region dynamism,
the specific way region configurations enter and exit the three qual-
itative spatial relations was able to be described using a conceptual
neighborhood graph. This conceptual neighborhood graph provided
a detailed description of how the relations between region compo-
nents can change over time.

Evaluation of hypothesis

Looking back at the hypothesis presented at the start of this thesis
(Section 1.2), the individual components can be answered as follows:

Decentralized algorithms have been designed that successfully de-
tect and monitor a variety of complex spatial phenomena. These al-
gorithms have been shown to:

1. Operate successfully without any need for coordinate informa-
tion,

2. be tolerant of node mobility, successfully running on dynamic
geosensor networks,

3. accurately detect the qualitative structure of the underlying re-
gion to varying extents; from the basicStatic algorithm being un-
able to distinguish between the surrounds and engulfs relations,
to the complexStatic algorithm that distinguished between the
surrounds, engulfs, and contains relations,

4. correctly detect salient changes to the qualitative structure of dy-
namic regions, with the simpleDynamic and complexDynamic
algorithms successfully recording the specifics of how region
components enter and exit qualitative relations, and

5. demonstrate from the results of the experiments that all algo-
rithms were able to accurately function while being efficient in
the amount of communication needed, with no module exceed-
ing a weak polynomial communication complexity.

7.2 limitations and future works

While the algorithms presented in this thesis have been shown to be
both accurate and efficient, there are some limitations that represent
avenues for future research.

131

Node volatility

When formally constructing the dynamic geosensor network used by
the algorithms, node communication was modeled with the graph
G(t) = (V, E(t)). While this graph allows for time varying commu-
nication (i.e., communication links can form and break over time),
it assumes node permanence. This may not always be the case, as
some nodes may enter or exit the geosensor network at various times.
This may be from nodes deactivating due to energy depletion, leav-
ing the area they are tasked to monitor, or a technical failure leading
to a breakdown. Additionally, new nodes may be introduced to re-
place nodes that have failed. This volatility can be formally modeled
with the communication graph G(t) = (V(t), E(t)), which describes
a volatile dynamic geosensor network.

Given that most field implementations of geosensor networks use
nodes with limited battery capacity, this limits the network to a finite
lifespan. Assuming that the algorithms described in this work were
modified to allow for new nodes to be introduced, this would allow
the area of interest to be monitored indefinitely. For the algorithms
described in this work, a gradual loss of nodes over time would not
introduce errors provided that there is sufficient coverage of the eval-
uated area. Recall from Section 6.1 that when node coverage becomes
too sparse, errors are quick to accumulate. Coverage could be kept up
by introducing new nodes to the network at approximately the same
rate that nodes drop out. New code could be added so that newly in-
troduced nodes request information from their neighbors. This code
would be similar to that of the request and response messages used
when a node enters a new region in the complexStatic algorithm.

Node unreliability

Common to the formal specifications of all algorithms in this work is
that the nodes’ communication and sensing capabilities are assumed
to be reliable. In field implementations of decentralized algorithms,
this has proven to not always be the case, with nodes occasionally
failing to receive messages or their sensors returning incorrect data.

The occasional dropped message would be unlikely to affect the
accuracy of the algorithms described in this work as they are based
on leader election and surprise flooding algorithms. These types of
algorithms require that nodes receiving a message pass that message
on if certain criteria are met. This means that any node that drops a
message would still receive that message, or a similar one, by another
of its neighbors.

Sensor inaccuracy would however be a problem for these algo-
rithms. In particular, consider how the dynamic algorithms detect
the appearance of a new region component. Recall from section 5.1.6
that nodes detecting a change in their sensed value will request the

132

sensed values of their neighbors. If all of the received sensed values
do not match the node’s own sensed value, the node will then assume
that a new region component has appeared. If this change in sensed
value was due to sensor error, then the detected appearance event
would also be in error. In order to eliminate such occurrences, the
algorithm’s code would need to be altered so that additional nodes
are required to confirm the detection of such events.

Both sensor and communication inaccuracy could be simulated
with the introduction of both message and sensor probability func-
tions. The probability that a node will send or receive a message as
well as the probability that the node senses the correct value could
then be altered in order to test the veracity of the algorithms at vari-
ous levels of node unreliability.

Dynamic region simulation

Two main approaches present themselves when simulating dynamic
regions; either import a sequence of images, or algorithmically gen-
erate a randomized dynamic region within the simulation. The first
method was used in this work as the specific topological events were
known ahead of time, allowing for verification of results as well as re-
peatability of the experiments. In addition, data from real-world phe-
nomena such as algal blooms could be imported using this method,
which would allow for the effectiveness of these algorithms to be
demonstrated for a wide range of phenomena.

Given that the type and frequency of topological changes occurring
to a randomized dynamic would be unknown, this unpredictability
would allow for a more comprehensive test of the algorithms’ veracity.
Initial work for simulating dynamic regions has been completed for
use in testing some of the algorithms presented in [8], which could
be extended to log topological events. This would enable the testing
of the algorithm’s veracity.

By additionally using data from real-world phenomena as well as
randomized dynamic regions, a more comprehensive evaluation of
the algorithms would be possible.

Network synchronization

In order to keep costs low, most field implementations equip nodes
with an oscillating crystal to keep time. Given that the oscillation rate
of these crystals is subject to voltage and temperature, over time the
clocks of individual nodes will begin to differ. This is known as clock
drift.

Common to all of the algorithms presented in this work is the
reliance on timers to ensure that the various components of the al-
gorithms are run correctly. For example, module 1 uses the region
timer to specify how long the network should wait before assigning a

133

unique identifier to each region component and then running module
2. This region timer is assumed to expire at the same time for every
node, which requires that every node’s clock increments by the same
amount at the same time. This is a property known as clock synchro-
nization. In addition to coordinating the timers, the nodes’ clocks are
used in the dynamic algorithms to log when topological events occur.

Substantial work has been carried out developing decentralized al-
gorithms that are capable of synchronizing the clocks of geosensor
networks [85]. A simple example of a synchronization protocol em-
ployed by many decentralized algorithms is round trip synchroniza-
tion, where a node sends a message to a neighbor requesting that
node’s current timestamp [8]. When the node receives a response,
it then knows that the received timestamp lies somewhere between
when the request was sent and the response received. By repeating
this process, a collection of time differences is recorded that can then
used to estimate the relative clock drift of the two nodes. This method
is fairly expensive in terms of communication complexity, requiring a
set of these messages be sent for each communication link in the net-
work. For networks with dense communication graphs, this would
lead to polynomial communication complexity. Given that after the
synchronization algorithm has run the clocks will again begin to drift
apart, the algorithm would need to be run periodically. This would
substantially decrease the algorithm’s efficiency, reducing network
lifespan.

An alternate approach to running clock synchronization algorithms
would be to record topological events at coarser granularity and to
dispense with the use of timers for the coordination of the algorithms’
various components. This could be done by using a mass-based ap-
proach to the detection of topological changes, similar to that of the al-
gorithms discussed in section 2.3.3. For example, while the algorithms
of chapter 5 are capable of immediately detecting the appearance of
new region components; disappearance, split, and merge events are
only detected by periodically checking for their occurrence. If each
region component were aware of the approximate number of nodes
it contained, sudden increases or decreases would be an indicator
of merge and split events respectively whereas a gradual change to-
wards zero would be an indicator of a disappearance event. Modules
3 and 4 would then only need to run after these events instead of
periodically.

Increasing algorithm capabilities

Presently the algorithms displayed in this work are capable of com-
pletely describing the topological structure of a region using the sim-
plified maptree. This means that while the relationships between re-
gion components are known, nothing is known about the absolute
size, shape, or position of these region components. This was inten-

134

tional as this work has focused on using qualitative spatial reasoning
to describe the structure of a region as opposed to a quantitative
record of the region’s structure as a set of polygons.

It would however be useful to include the relative sizes of the re-
gion components. Looking at the algorithms of section 2.3.3, it is
possible to compute the relative size of region components using
mass-based approaches. If the white nodes of the simplified map-
tree (i.e., the nodes representing the region components) were to be
additionally labeled with their relative size, it would provide a more
comprehensive understanding of the region’s structure. Additionally,
this would allow the dynamic algorithms of chapter 5 to describe ex-
pansion and contraction of region components alongside topological
events.

On the subject of the dynamic algorithms, a limitation of these al-
gorithms is that region components can split into at most two compo-
nents and at most two components can merge. This means that topo-
logical events where additional region components merge or split,
such as the region configuration shown in Figure 54, are not able to
be correctly detected. Such events could however be accommodated
by altering the change table (Ct), specifically, by replacing the part
columns (i.e., p1 and p2) with a single column that stores a set of
region components.

Figure 54: Dynamic region example showing the simultaneous merging of
three region components.

Additionally, topological events were treated as atomic by the dy-
namic algorithms, with at most one topological event occurring at a
single time step. While the code for module 5 is capable of detect-
ing multiple topological events, for the sake of simplicity the code of
module 4, which records these topological changes, is not. It would
therefore simply be a case of updating the module 4 code so that the
dynamic algorithms are capable of recording these changes.

7.3 final thoughts

While this thesis has focused chiefly on the testing of the decentral-
ized algorithms presented in this work on simulated dynamic geosen-
sor networks, the practical implications of this work must also be
considered. Although the qualitative spatial relations and simplified

135

maptrees described in this work are not limited to decentralized algo-
rithms, it is useful to use a geosensor network as an example.

Consider the task of monitoring changes to the structure of dy-
namic spatial phenomena on the ocean’s surface, for instance algal
blooms or oil spills. Particularly during storms, such areas would not
have sufficient visibility for satellite imagery and would suffer from
inadequate location accuracy due to poor GNSS (Global Navigation
Satellite System) reception. A network of buoyant sensor nodes could
however be scattered across the sea surface, with wind and ocean cur-
rents aiding in their dispersal. The algorithms described in this work
would then make use of qualitative spatial reasoning to efficiently
record only salient changes to the internal structure of the monitored
phenomena. These nodes would then require only a single sensor
to detect the presence or absence of the phenomena and a wireless
transceiver to communicate with neighboring nodes. This, in addi-
tion to not requiring a GNSS radio, would reduce both the cost and
the power requirements of the network.

This work could be of great benefit in bringing long-term environ-
mental monitoring to areas previously unable to be monitored due to
their location, the cost of deploying a suitable geosensor network, or
the time required to be monitored.

136

137

A
A P P E N D I X

Halfedge Twin Next Previous Face Component

-1 -1 -1 -1 0 -1

a a b d 0 M1

a a e g 1 M1

b b c a 0 M1

b b g j 2 M1

c c d b 0 M1

c c j j 3 M1

d d a c 0 M1

d d j e 2 M1

e e f a 1 M1

e e d h 2 M1

f f g e 1 M1

f f h h 4 M1

g g a f 1 M1

g g h b 2 M1

h h e g 2 M1

h h f f 4 M1

i i i i 2 M3

i i i i 5 M3

j j b d 2 M1

j j c c 3 M1

k k l m 3 M2

k k n o 6 M2

l l m k 3 M2

l l o p 7 M2

m m k l 3 M2

m m p n 8 M2

n n o l 6 M2

n n m p 8 M2

o o k n 6 M2

o o p l 7 M2

p p l o 7 M2

p p n m 8 M2

Table 14: DCEL table augmented with connected component labeling. Com-
plete version of Table 2.138

rida ridb cid

-1 0 -1

0 1 M1

0 2 M1

0 3 M1

1 2 M1

1 4 M1

2 3 M1

2 4 M1

2 5 M3

3 6 M2

3 7 M2

3 8 M2

6 7 M2

6 8 M2

7 8 M2

Table 15: Simplified maptree table based on Table 14.

rida ridb cid neg

-1 0 -1 0

0 2 a 0

0 3 a 0

0 4 a 0

1 8 d 1

1 9 e 1

2 3 a 0

2 5 b 0

3 4 a 0

3 6 c 0

3 7 a 0

4 7 a 0

Table 16: Simplified maptree table based on Figure 25.

139

t = 0 t = 100 t = 200 t = 300

t = 400 t = 500 t = 600 t = 700

t = 800 t = 900 t = 1000 t = 1100

t = 1200 t = 1300 t = 1400 t = 1500

t = 1600 t = 1700

Figure 55: Simple dynamic region used in the evaluation of algorithms from
chapter 5. Region dimensions are 40×32 and t indicates the time
the region enters the shown configuration.

140

rida ridb cid t1 t2

-1 0 -1 0 ∅
0 1 a 100 200

1 2 b 100 200

0 3 a 200 500

0 4 a 200 500

3 4 a 200 500

2 3 b 200 500

0 3 c 500 1300

0 4 c 500 1300

3 4 c 500 1300

2 3 c 500 800

0 2 c 500 800

3 5 c 900 1300

0 5 c 900 1300

0 3 d 1300 1500

0 4 d 1300 1500

3 4 d 1300 1500

3 5 e 1300 1500

0 6 d 1500 ∅
5 6 e 1500 ∅

Table 17: Simplified dynamic maptree table based on Figure 55 where split
detected at 200, unenclose transition at 500, disappearance at 800,
appearance at 900, enclose transition at 1300, and merge detected
at 1500.

w p1 p2 split t

1 3 4 TRUE 200

c a b FALSE 500

c d e TRUE 1300

6 3 4 FALSE 1500

Table 18: Change table based on Figure 55 where split detected at 200, un-
enclose transition at 500, enclose transition at 1300, and merge de-
tected at 1500.

141

t = 0 t = 100 t = 200 t = 300

t = 400 t = 500 t = 600 t = 700

t = 800 t = 900 t = 1000 t = 1100

t = 1200 t = 1300 t = 1400 t = 1500

t = 1600 t = 1700 t = 1800 t = 1900

t = 2000 t = 2100 t = 2200 t = 2300

t = 2400 t = 2500 t = 2600

Figure 56: Complex dynamic region used in the evaluation of algorithms
from chapter 5. Region dimensions are 40×32 and t indicates the
time the region enters the shown configuration.

142

rida ridb cid neg t1 t2

-1 0 -1 FALSE 0 ∅
0 2 a FALSE 100 500

1 3 b TRUE 100 300

2 4 c FALSE 100 500

0 7 a FALSE 500 1000

6 7 a FALSE 500 1000

0 6 a FALSE 500 1000

17 7 c FALSE 500 1000

0 7 d FALSE 1000 1800

17 7 d FALSE 1000 1300

0 6 d FALSE 1000 1800

6 7 d FALSE 1000 1800

0 4 d FALSE 1000 1300

7 8 d FALSE 1400 1800

0 8 d FALSE 1400 1800

0 7 e FALSE 1800 2200

0 6 e FALSE 1800 2200

6 7 e FALSE 1800 2200

7 8 f FALSE 1800 2200

0 9 e FALSE 2200 ∅
8 9 f FALSE 2200 ∅
10 11 g TRUE 2400 ∅

Table 19: Simplified dynamic maptree table based on Figure 56 where split
detected at 200, unenclose transition at 500, disappearance at 800,
appearance at 900, enclose transition at 1300, and merge detected
at 1500.

w p1 p2 split t

5 1 3 FALSE 300

2 6 7 TRUE 500

d a c FALSE 1000

d e f TRUE 1800

9 6 7 FALSE 2200

5 10 11 TRUE 2400

Table 20: Change table based on Figure 56 where split detected at 200, un-
enclose transition at 500, enclose transition at 1300, and merge de-
tected at 1500.

143

cid rid t1 t2

a 1 100 300

b 2 100 300

c 3 100 300

a 5 300 1000

c 5 300 1000

d 5 1000 1800

e 5 1800 2400

f 5 1800 2400

e 10 2400 ∅
f 11 2400 ∅
g 9 2400 ∅

Table 21: Label table based on Figure 56 where split detected at 200, unen-
close transition at 500, enclose transition at 1300, and merge de-
tected at 1500.

144

B I B L I O G R A P H Y

[7] A. Galton, Qualitative spatial change. Oxford University Press,
2000.

[8] M. Duckham, Decentralized Spatial Computing: Foundations of
Geosensor Networks. Springer Publishing Company, Incorpo-
rated, 2012.

[9] A. Both, M. Duckham, P. Laube, T. Wark, and J. Yeoman, “De-
centralized Monitoring of Moving Objects in a Transportation
Network Augmented with Checkpoints,” The Computer Journal,
vol. 56, no. 12, pp. 1432–1449, Dec. 2013. [Online]. Available:
http://comjnl.oxfordjournals.org/content/56/12/1432

[10] A. Both, W. Kuhn, and M. Duckham, “Spatiotemporal
Braitenberg Vehicles,” in Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, ser. SIGSPATIAL’13. New York, NY, USA: ACM,
Nov. 2013, pp. 74–83. [Online]. Available: http://doi.acm.org/
10.1145/2525314.2525344

[11] M. P. Dube and M. J. Egenhofer, “Surrounds in Partitions,” in
Proceedings of the 22Nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser. SIGSPATIAL
’14. New York, NY, USA: ACM, 2014, pp. 233–242. [Online].
Available: http://doi.acm.org/10.1145/2666310.2666380

[12] A. Both and M. Duckham, “Qualitative Spatial Structure in Com-
plex Areal Objects Using Location-Free, Mobile Geosensor Net-
works,” in 2013 IEEE 13th International Conference on Data Mining
Workshops (ICDMW), Dec. 2013, pp. 978–985.

[13] A. G. Cohn and J. Renz, “Qualitative spatial representation and
reasoning,” Foundations of Artificial Intelligence, vol. 3, pp. 551–
596, 2008.

[14] S. Nittel, N. Trigoni, K. Ferentinos, F. Neville, A. Nural, and
N. Pettigrew, “A drift-tolerant model for data management in
ocean sensor networks,” in International Workshop on Data Engi-
neering for Wireless and Mobile Access, 2007, pp. 49–58.

[15] A. G. Cohn and N. M. Gotts, “The ‘egg-yolk’representation of
regions with indeterminate boundaries,” Geographic objects with
indeterminate boundaries, vol. 2, pp. 171–187, 1996.

145

http://comjnl.oxfordjournals.org/content/56/12/1432
http://doi.acm.org/10.1145/2525314.2525344
http://doi.acm.org/10.1145/2525314.2525344
http://doi.acm.org/10.1145/2666310.2666380

[16] D. A. Randell and A. G. Cohn, “Modelling Topological and
Metrical Properties in Physical Processes.” KR, vol. 89, pp.
357–368, 1989. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.35.9942&rep=rep1&type=pdf

[17] D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic based on
regions and connection.” KR, vol. 92, pp. 165–176, 1992. [Online].
Available: http://www.researchgate.net/profile/Anthony_
Cohn/publication/221393453_A_Spatial_Logic_based_on_
Regions_and_Connection/links/0912f50cbb29aa483d000000.pdf

[18] A. G. Cohn, B. Bennett, J. Gooday, and N. M. Gotts,
“Qualitative Spatial Representation and Reasoning with the
Region Connection Calculus,” GeoInformatica, vol. 1, no. 3, pp.
275–316, Oct. 1997. [Online]. Available: http://link.springer.com.
ezp.lib.unimelb.edu.au/article/10.1023/A%3A1009712514511

[19] M. J. Egenhofer and R. D. Franzosa, “Point-set topological spatial
relations,” International Journal of Geographical Information System,
vol. 5, no. 2, pp. 161–174, 1991.

[20] M. J. Egenhofer and J. Herring, “Categorizing binary topological
relations between regions, lines, and points in geographic
databases,” The, vol. 9, pp. 94–1, 1992. [Online]. Avail-
able: http://www.spatial.cs.umn.edu/Courses/Spring10/8715/
papers/MSD11_egenhofer_herring.pdf

[21] M. J. Egenhofer‡, E. Clementini, and P. d. Felice, “Topological
relations between regions with holes,” International Journal
of Geographical Information Systems, vol. 8, no. 2, pp. 129–
142, Mar. 1994. [Online]. Available: http://dx.doi.org/10.1080/
02693799408901990

[22] M. Schneider and T. Behr, “Topological Relationships Between
Complex Spatial Objects,” ACM Trans. Database Syst., vol. 31,
no. 1, pp. 39–81, Mar. 2006. [Online]. Available: http:
//doi.acm.org/10.1145/1132863.1132865

[23] C. Freksa, “Temporal reasoning based on semi-intervals,”
Artificial Intelligence, vol. 54, no. 1–2, pp. 199–227, Mar. 1992. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/000437029290090K

[24] A. Galton, “Towards a qualitative theory of movement,”
in Spatial Information Theory A Theoretical Basis for GIS,
ser. Lecture Notes in Computer Science, A. U. Frank and
W. Kuhn, Eds. Springer Berlin Heidelberg, 1995, no. 988,
pp. 377–396. [Online]. Available: http://link.springer.com.ezp.
lib.unimelb.edu.au/chapter/10.1007/3-540-60392-1_25

146

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.9942&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.9942&rep=rep1&type=pdf
http://www.researchgate.net/profile/Anthony_Cohn/publication/221393453_A_Spatial_Logic_based_on_Regions_and_Connection/links/0912f50cbb29aa483d000000.pdf
http://www.researchgate.net/profile/Anthony_Cohn/publication/221393453_A_Spatial_Logic_based_on_Regions_and_Connection/links/0912f50cbb29aa483d000000.pdf
http://www.researchgate.net/profile/Anthony_Cohn/publication/221393453_A_Spatial_Logic_based_on_Regions_and_Connection/links/0912f50cbb29aa483d000000.pdf
http://link.springer.com.ezp.lib.unimelb.edu.au/article/10.1023/A%3A1009712514511
http://link.springer.com.ezp.lib.unimelb.edu.au/article/10.1023/A%3A1009712514511
http://www.spatial.cs.umn.edu/Courses/Spring10/8715/papers/MSD11_egenhofer_herring.pdf
http://www.spatial.cs.umn.edu/Courses/Spring10/8715/papers/MSD11_egenhofer_herring.pdf
http://dx.doi.org/10.1080/02693799408901990
http://dx.doi.org/10.1080/02693799408901990
http://doi.acm.org/10.1145/1132863.1132865
http://doi.acm.org/10.1145/1132863.1132865
http://www.sciencedirect.com/science/article/pii/000437029290090K
http://www.sciencedirect.com/science/article/pii/000437029290090K
http://link.springer.com.ezp.lib.unimelb.edu.au/chapter/10.1007/3-540-60392-1_25
http://link.springer.com.ezp.lib.unimelb.edu.au/chapter/10.1007/3-540-60392-1_25

[25] M. J. Egenhofer and K. K. Al-Taha, “Reasoning about gradual
changes of topological relationships,” in Theories and Methods
of Spatio-Temporal Reasoning in Geographic Space, ser. Lecture
Notes in Computer Science, A. U. Frank, I. Campari, and
U. Formentini, Eds. Springer Berlin Heidelberg, 1992, no. 639,
pp. 196–219. [Online]. Available: http://link.springer.com.ezp.
lib.unimelb.edu.au/chapter/10.1007/3-540-55966-3_12

[26] J. Jiang and M. Worboys, “Event-based topology for dynamic
planar areal objects,” International Journal of Geographical
Information Science, vol. 23, no. 1, pp. 33–60, Jan. 2009.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.
1080/13658810802577247

[27] M. Worboys, “Modeling Indoor Space,” in Proceedings of the
3rd ACM SIGSPATIAL International Workshop on Indoor Spatial
Awareness, ser. ISA ’11. New York, NY, USA: ACM, 2011, pp.
1–6. [Online]. Available: http://doi.acm.org/10.1145/2077357.
2077358

[28] ——, “The Maptree: A Fine-Grained Formal Representation
of Space,” in Geographic Information Science, ser. Lecture Notes
in Computer Science, N. Xiao, M.-P. Kwan, M. Goodchild,
and S. Shekhar, Eds. Springer Berlin Heidelberg, Jan.
2012, vol. 7478, pp. 298–310. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-33024-7_22

[29] M. F. Worboys and P. Bofakos, “A canonical model for a class of
areal spatial objects,” in Advances in Spatial Databases. Springer,
1993, pp. 36–52.

[30] A. Rosenfeld, “Adjacency in digital pictures,” Information
and Control, vol. 26, no. 1, pp. 24–33, Sep. 1974. [On-
line]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0019995874906962

[31] E. Costanza and J. Robinson, “A Region Adjacency Tree
Approach to the Detection and Design of Fiducials.” 2003, pp.
63–69. [Online]. Available: http://eprints.soton.ac.uk/270958/

[32] D. E. Muller and F. P. Preparata, “Finding the intersection of two
convex polyhedra,” Theoretical Computer Science, vol. 7, no. 2, pp.
217–236, 1978. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0304397578900518

[33] M. De Berg, M. Van Kreveld, M. Overmars, and O. C.
Schwarzkopf, Computational geometry. Springer, 2000.

[34] J. Stell and M. Worboys, “Relations between adjacency trees,”
Theoretical Computer Science, vol. 412, no. 34, pp. 4452–4468,

147

http://link.springer.com.ezp.lib.unimelb.edu.au/chapter/10.1007/3-540-55966-3_12
http://link.springer.com.ezp.lib.unimelb.edu.au/chapter/10.1007/3-540-55966-3_12
http://www.tandfonline.com/doi/abs/10.1080/13658810802577247
http://www.tandfonline.com/doi/abs/10.1080/13658810802577247
http://doi.acm.org/10.1145/2077357.2077358
http://doi.acm.org/10.1145/2077357.2077358
http://dx.doi.org/10.1007/978-3-642-33024-7_22
http://dx.doi.org/10.1007/978-3-642-33024-7_22
http://linkinghub.elsevier.com/retrieve/pii/S0019995874906962
http://linkinghub.elsevier.com/retrieve/pii/S0019995874906962
http://eprints.soton.ac.uk/270958/
http://www.sciencedirect.com/science/article/pii/0304397578900518
http://www.sciencedirect.com/science/article/pii/0304397578900518

Aug. 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0304397511003276

[35] M. Worboys, “Using maptrees to characterize topological
change,” in Spatial Information Theory. Springer, 2013, pp. 74–
90.

[36] M. Duckham, D. Nussbaum, J.-R. Sack, and N. Santoro,
“Efficient, Decentralized Computation of the Topology of Spatial
Regions,” IEEE Transactions on Computers, vol. 60, no. 8, pp.
1100–1113, Aug. 2011. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5551124

[37] M. Worboys and M. Duckham, “Monitoring qualitative spa-
tiotemporal change for geosensor networks,” International Jour-
nal of Geographical Information Science, vol. 20, no. 10, pp. 1087–
1108, 2006.

[38] J. Jiang and M. Worboys, “Detecting basic topological changes in
sensor networks by local aggregation,” in GIS: Proceedings of the
ACM International Symposium on Advances in Geographic Informa-
tion Systems, 2008, pp. 13–22.

[39] C. Farah, C. Zhong, M. Worboys, and S. Nittel, Detecting topolog-
ical change using a wireless sensor network, 2008, vol. 5266 LNCS.

[40] M. J. Sadeq, “In-network Detection of Topological Change of Re-
gions with a Wireless Sensor Network,” Ph.D. dissertation, Uni-
versity of Melbourne, Department of Geomatics, 2009.

[41] M. Shi and S. Winter, “Detecting change in snapshot sequences,”
in Geographic Information Science. Springer, 2010, pp. 219–233.

[42] J. Jiang, M. Worboys, and S. Nittel, “Qualitative change detec-
tion using sensor networks based on connectivity information,”
GeoInformatica, vol. 15, no. 2, pp. 305–328, 2011.

[43] M. Duckham, J. Stell, M. Vasardani, and M. Worboys, Qualitative
change to 3-valued regions, 2010, vol. 6292 LNCS.

[44] M.-H. Jeong and M. Duckham, “Decentralized querying of
topological relations between regions monitored by a coordinate-
free geosensor network,” GeoInformatica, vol. 17, no. 4, pp.
669–696, Feb. 2013. [Online]. Available: http://link.springer.
com.ezp.lib.unimelb.edu.au/article/10.1007/s10707-012-0174-7

[45] M.-H. Jeong, M. Duckham, A. Kealy, H. J. Miller, and
A. Peisker, “Decentralized and coordinate-free computation
of critical points and surface networks in a discretized
scalar field,” International Journal of Geographical Information
Science, vol. 28, no. 1, pp. 1–21, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1080/13658816.2013.801578

148

http://www.sciencedirect.com/science/article/pii/S0304397511003276
http://www.sciencedirect.com/science/article/pii/S0304397511003276
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5551124
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5551124
http://link.springer.com.ezp.lib.unimelb.edu.au/article/10.1007/s10707-012-0174-7
http://link.springer.com.ezp.lib.unimelb.edu.au/article/10.1007/s10707-012-0174-7
http://dx.doi.org/10.1080/13658816.2013.801578

[46] M. H. Jeong, “Qualitative characteristics of fields monitored by
a resource-constrained geosensor network,” Ph.D. dissertation,
2014. [Online]. Available: http://minerva-access.unimelb.edu.
au/handle/11343/40761

[47] P. Laube, M. Kreveld, and S. Imfeld, “Finding REMO—detecting
relative motion patterns in geospatial lifelines,” Developments in
Spatial Data Handling, pp. 201–215, 2005.

[48] S. Dodge, R. Weibel, and A.-K. Lautenschütz, “Towards a taxon-
omy of movement patterns,” Information visualization, vol. 7, no.
3-4, pp. 240–252, 2008.

[49] G. Andrienko, N. Andrienko, U. Demsar, D. Dransch, J. Dykes,
S. I. Fabrikant, M. Jern, M.-J. Kraak, H. Schumann, and C. Tomin-
ski, “Space, time and visual analytics,” International Journal of Ge-
ographical Information Science, vol. 24, no. 10, pp. 1577–1600, 2010.

[50] J. Gudmundsson, P. Laube, and T. Wolle, “Computational move-
ment analysis,” in Springer Handbook of Geographic Information.
Springer, 2012, pp. 423–438.

[51] J. Gudmundsson and M. van Kreveld, “Computing longest du-
ration flocks in trajectory data,” in Proceedings of the 14th annual
ACM international symposium on Advances in geographic informa-
tion systems. ACM, 2006, pp. 35–42.

[52] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle, “Report-
ing flock patterns,” Computational Geometry, vol. 41, no. 3, pp.
111–125, 2008.

[53] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen,
“Discovery of convoys in trajectory databases,” Proceedings of the
VLDB Endowment, vol. 1, no. 1, pp. 1068–1080, 2008.

[54] T. Shirabe, “Correlation analysis of discrete motions,” in Geo-
graphic Information Science. Springer, 2006, pp. 370–382.

[55] M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle, “Report-
ing leadership patterns among trajectories,” in Proceedings of the
2007 ACM symposium on Applied computing. ACM, 2007, pp. 3–7.

[56] ——, “Reporting leaders and followers among trajectories of
moving point objects,” GeoInformatica, vol. 12, no. 4, pp. 497–528,
2008.

[57] P. Laube, M. Duckham, and T. Wolle, “Decentralized movement
pattern detection amongst mobile geosensor nodes,” in Geo-
graphic Information Science. Springer, 2008, pp. 199–216.

149

http://minerva-access.unimelb.edu.au/handle/11343/40761
http://minerva-access.unimelb.edu.au/handle/11343/40761

[58] P. Laube, M. Duckham, and M. Palaniswami, “Deferred decen-
tralized movement pattern mining for geosensor networks,” In-
ternational Journal of Geographical Information Science, vol. 25, no. 2,
pp. 273–292, 2011.

[59] J. Yeoman and M. Duckham, “Decentralized network neigh-
borhood information collation and distribution for convoy
detection,” 2012. [Online]. Available: http://www.giscience.org/
past/2012/proceedings/abstracts/giscience2012_paper_172.pdf

[60] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-
grained localization in ad-hoc networks of sensors,” in Proceed-
ings of the 7th annual international conference on Mobile computing
and networking. ACM, 2001, pp. 166–179.

[61] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelza-
her, “Range-free localization schemes for large scale sensor net-
works,” in Proceedings of the 9th annual international conference on
Mobile computing and networking. ACM, 2003, pp. 81–95.

[62] D. Niculescu and B. Nath, “DV based positioning in ad hoc net-
works,” Telecommunication Systems, vol. 22, no. 1-4, pp. 267–280,
2003.

[63] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global co-
ordinate system from local information on an ad hoc sensor net-
work,” in Information Processing in Sensor Networks. Springer,
2003, pp. 333–348.

[64] J. G. Lim and S. V. Rao, “Mobility-enhanced positioning in ad
hoc networks,” in Wireless Communications and Networking, 2003.
WCNC 2003. 2003 IEEE, vol. 3. IEEE, 2003, pp. 1832–1837.

[65] M. Grossglauser and M. Vetterli, “Locating mobile nodes with
ease: learning efficient routes from encounter histories alone,”
IEEE/ACM Transactions on Networking (TON), vol. 14, no. 3, pp.
457–469, 2006.

[66] Q. Liu, A. Pruteanu, and S. Dulman, “GDE: A Distributed
Gradient-Based Algorithm for Distance Estimation in Large-
Scale Networks,” 2011.

[67] ——, “Gradient-Based Distance Estimation for Spatial Comput-
ers,” The Computer Journal, p. bxt124, Nov. 2013. [Online]. Avail-
able: http://comjnl.oxfordjournals.org/content/early/2013/11/
21/comjnl.bxt124

[68] S. Merkel, S. Mostaghim, and H. Schmeck, “A study of mobility
in ad hoc networks and its effects on a hop count based distance
estimation,” in New Technologies, Mobility and Security (NTMS),
2012 5th International Conference on. IEEE, 2012, pp. 1–5.

150

http://www.giscience.org/past/2012/proceedings/abstracts/giscience2012_paper_172.pdf
http://www.giscience.org/past/2012/proceedings/abstracts/giscience2012_paper_172.pdf
http://comjnl.oxfordjournals.org/content/early/2013/11/21/comjnl.bxt124
http://comjnl.oxfordjournals.org/content/early/2013/11/21/comjnl.bxt124

[69] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computa-
tion of aggregate information,” in Foundations of Computer Sci-
ence, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE,
2003, pp. 482–491.

[70] A. Pruteanu, V. Iyer, and S. Dulman, “Faildetect: Gossip-based
failure estimator for large-scale dynamic networks,” in Computer
Communications and Networks (ICCCN), 2011 Proceedings of 20th
International Conference on. IEEE, 2011, pp. 1–6.

[71] A. Pruteanu and S. Dulman, “LossEstimate: Distributed fail-
ure estimation in wireless networks,” Journal of Systems and
Software, vol. 85, no. 12, pp. 2785–2795, Dec. 2012. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121212002233

[72] A. Pruteanu, V. Iyer, and S. Dulman, “ChurnDetect: a gossip-
based churn estimator for large-scale dynamic networks,” in
Euro-Par 2011 Parallel Processing. Springer, 2011, pp. 289–301.

[73] L. Ramaswamy, B. Gedik, and L. Liu, “A distributed approach to
node clustering in decentralized peer-to-peer networks,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 16, no. 9, pp.
814–829, 2005.

[74] J. Y. Yu and P. H. Chong, “A survey of clustering schemes for mo-
bile ad hoc networks,” IEEE Communications Surveys & Tutorials,
vol. 7, no. 1, pp. 32–48, 2005.

[75] A. Pruteanu and S. Dulman, “ASH: Tackling node mobility in
large-scale networks,” Computing, vol. 94, no. 8-10, pp. 811–832,
2012.

[76] N. Bicocchi, M. Mamei, and F. Zambonelli, “Self-organizing spa-
tial regions for sensor network infrastructures,” in Advanced In-
formation Networking and Applications Workshops, 2007, AINAW’07.
21st International Conference on, vol. 2. IEEE, 2007, pp. 66–71.

[77] U. Wilensky, “NetLogo,” Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston,
IL, http://ccl.northwestern.edu/netlogo/, 1999. [Online]. Avail-
able: http://ccl.northwestern.edu/netlogo/

[78] N. Santoro, Design and analysis of distributed algorithms. Wiley-
Interscience, 2006, vol. 56.

[79] R. Milner, Communicating and Mobile Systems: The Pi Calculus.
Cambridge University Press, May 1999.

[80] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, Apr.
1996.

151

http://www.sciencedirect.com/science/article/pii/S0164121212002233
http://www.sciencedirect.com/science/article/pii/S0164121212002233
http://ccl.northwestern.edu/netlogo/

[81] S. Dulman, P. Havinga, and J. Hurink, “Wave leader election pro-
tocol for wireless sensor networks,” 2002.

[82] F. Bartumeus, M. G. E. da Luz, G. M. Viswanathan, and
J. Catalan, “Animal Search Strategies: A Quantitative Random-
Walk Analysis,” Ecology, vol. 86, no. 11, pp. 3078–3087, Nov.
2005. [Online]. Available: http://onlinelibrary.wiley.com/doi/
10.1890/04-1806/abstract

[83] G. Ramos-Fernández, J. L. Mateos, O. Miramontes, G. Cocho,
H. Larralde, and B. Ayala-Orozco, “Lévy walk patterns in the
foraging movements of spider monkeys (Ateles geoffroyi),” Be-
havioral Ecology and Sociobiology, vol. 55, no. 3, pp. 223–230, 2004.

[84] D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J.
Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brier-
ley, and M. A. Hindell, “Scaling laws of marine predator search
behaviour,” Nature, vol. 451, no. 7182, pp. 1098–1102, 2008.

[85] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock
synchronization for wireless sensor networks: a survey,”
Ad Hoc Networks, vol. 3, no. 3, pp. 281–323, May 2005.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1570870505000144

152

http://onlinelibrary.wiley.com/doi/10.1890/04-1806/abstract
http://onlinelibrary.wiley.com/doi/10.1890/04-1806/abstract
http://linkinghub.elsevier.com/retrieve/pii/S1570870505000144
http://linkinghub.elsevier.com/retrieve/pii/S1570870505000144

	Abstract
	Declaration
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Background and problem statement
	1.2 Hypothesis and scope
	1.3 Significance of study
	1.4 Structure of thesis

	2 Literature review
	2.1 Qualitative representation of regions
	2.1.1 Simplification of sensor data
	2.1.2 Topological relations between regions
	2.1.3 Topological change

	2.2 Maptree
	2.2.1 Maptree storage
	2.2.2 Maptree dynamism

	2.3 Decentralized algorithms
	2.3.1 Decentralized monitoring of regions
	2.3.2 Group movement patterns
	2.3.3 Location-free, mobile node based approaches

	2.4 Summary

	3 Methodology
	3.1 Algorithm design
	3.1.1 Static geosensor network
	3.1.2 Algorithm specification
	3.1.3 Dynamic geosensor network

	3.2 Algorithm simulation
	3.2.1 NetLogo simulation environment
	3.2.2 BehaviorSpace

	3.3 Algorithm evaluation
	3.3.1 Scalability
	3.3.2 Veracity

	3.4 Summary

	4 Static regions
	4.1 Basic data structure
	4.1.1 Qualitative relations
	4.1.2 Algorithm design
	4.1.3 Module 1: Region identification
	4.1.4 Module 2: Voronoi region generation
	4.1.5 Module 3: Adjacency relation identification
	4.1.6 Module 4: Containment tree generation
	4.1.7 Module 5: Node movement
	4.1.8 Algorithm summary

	4.2 Simplified maptree for simple regions
	4.2.1 Simplified maptree table
	4.2.2 Qualitative relations
	4.2.3 Algorithm design
	4.2.4 Module 3a: Modified adjacency relation identification
	4.2.5 Module 4a: Simplified maptree generation
	4.2.6 Module 5a: Modified node movement

	4.3 Simplified maptree for complex regions
	4.3.1 Qualitative relations
	4.3.2 Algorithm design
	4.3.3 Module 3b: Modified adjacency relation identification for complex regions
	4.3.4 Module 4b: Simplified maptree generation for complex regions
	4.3.5 Module 5b: Modified node movement for complex regions

	4.4 Summary

	5 Dynamic Regions
	5.1 Simple regions
	5.1.1 Dynamic data structure
	5.1.2 Qualitative relations
	5.1.3 Algorithm design
	5.1.4 Module 3c: Adjacency relation identification for dynamic regions
	5.1.5 Module 4c: Simplified maptree generation for dynamic regions
	5.1.6 Module 5c: Node movement for dynamic regions

	5.2 Complex regions
	5.2.1 Qualitative relations
	5.2.2 Algorithm design
	5.2.3 Module 3d: Adjacency relation identification for complex dynamic regions
	5.2.4 Module 4d: Simplified maptree generation for complex dynamic regions

	5.3 Summary

	6 Evaluation
	6.1 Veracity
	6.1.1 Veracity of module 1
	6.1.2 Veracity of module 2

	6.2 Scalability of static regions
	6.2.1 Simple region configuration
	6.2.2 Complex region configuration

	6.3 Scalability of dynamic regions
	6.3.1 Simple region configuration
	6.3.2 Complex region configuration

	6.4 Summary

	7 Conclusions
	7.1 Results and major findings
	7.2 Limitations and future works
	7.3 Final thoughts

	A Appendix

