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Redundancy checking is an important task in the research of knowledge representation 
and reasoning. In this paper, we consider redundant qualitative constraints. For a set �
of qualitative constraints, we say a constraint (xR y) in � is redundant if it is entailed by 
the rest of �. A prime subnetwork of � is a subset of � which contains no redundant 
constraints and has the same solution set as �. It is natural to ask how to compute such 
a prime subnetwork, and when it is unique. We show that this problem is in general 
intractable, but becomes tractable if � is over a tractable subalgebra S of a qualitative 
calculus. Furthermore, if S is a subalgebra of the Region Connection Calculus RCC8 in which 
weak composition distributes over nonempty intersections, then � has a unique prime 
subnetwork, which can be obtained in cubic time by removing all redundant constraints 
simultaneously from �. As a by-product, we show that any path-consistent network over 
such a distributive subalgebra is minimal and globally consistent in a qualitative sense. 
A thorough empirical analysis of the prime subnetwork upon real geographical data sets 
demonstrates the approach is able to identify significantly more redundant constraints than 
previously proposed algorithms, especially in constraint networks with larger proportions 
of partial overlap relations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Qualitative spatial reasoning is a common subfield of artificial intelligence and geographical information science, and has 
applications ranging from natural language understanding [13], robot navigation [46], geographic information systems (GISs) 
[18], sea navigation [54], to high level interpretation of video data [48].

Typically, the qualitative approach represents spatial information by introducing a relation model on a domain of spatial 
entities, which could be points, line segments, rectangles, or arbitrary regions. In the literature, such a relation model is 
often called a qualitative calculus [34]. In the past three decades, dozens of spatial (as well as temporal) qualitative calculi 
have been proposed in the literature (cf. [11]). Among these, Interval Algebra (IA) [1] and the RCC8 algebra [41] are widely 
known as the most influential qualitative calculi for representing qualitative temporal and, respectively, spatial information. 
Other well-known qualitative calculi include Point Algebra (PA) [51], Cardinal Relation Algebra (CRA) [33], Rectangle Algebra 
(RA) [24], the RCC5 algebra [41], etc.
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Using a qualitative calculus M, we represent spatial or temporal information in terms of relations in M, and formulate a 
spatial or temporal problem as a set of qualitative constraints (called a qualitative constraint network). A qualitative constraint 
has the form (xR y), which specifies that the two variables x, y are related by the relation R . The consistency problem
is to decide whether a set of qualitative constraints can be satisfied simultaneously. The consistency problem has been 
investigated in depth for many qualitative calculi in the literature, see e.g., [51,50,33,40,39,43,42,14,55,37,28,35,45,30].

In this paper, we consider the important problem of redundant qualitative constraints. Given a set � of qualitative 
constraints, we say a constraint (xR y) in � is redundant if it is entailed by the rest of �, i.e., removing (xR y) from � will 
not change the solution set of �. It is natural to ask when a network contains redundant constraints and how to get a 
non-redundant subset without changing the solution set. We call a subset of � a prime subnetwork of � if it contains no 
redundant constraints and has the same solution set as �.

The redundancy problem (i.e., the problem of determining if a constraint is redundant in a network) is related to the 
minimal label problem (cf. [38,8,20,36,3]). A qualitative constraint network � is called minimal if for each constraint (xR y)

in �, R is the minimal (i.e., the strongest) relation between x, y that is entailed by �. Roughly speaking, the minimal 
network removes ‘redundant’ or ‘unnecessary’ basic relations from each constraint, while the redundancy problem removes 
‘redundant’ or ‘unnecessary’ constraints from the constraint network.

We show in this paper that it is in general co-NP hard to determine if a constraint is redundant in a qualitative constraint 
network. But if all constraints in � are taken from a tractable subclass1 S then a prime subnetwork can be found in poly-
nomial time. For example, if S is a tractable subclass of RCC5 or RCC8 that contains all basic relations, then we can find a 
prime subnetwork in O (n5) time. Furthermore, if S is a subalgebra of RCC5 or RCC8 in which weak composition distributes 
over nonempty intersections, then � has a unique prime subnetwork, which is obtained by removing all redundant con-
straints from �. We also devise a cubic time algorithm for computing this unique prime subnetwork, which has the same 
time complexity as the two approximate algorithms of Wallgrün [52].

As a by-product, we identify an important class of subalgebras of qualitative calculi, called distributive subalgebras. A sub-
algebra D of a qualitative calculus M is called distributive if weak composition distributes over nonempty intersections 
in D. We show that any path-consistent network over a distributive subalgebra is weakly globally consistent and minimal, 
where weakly global consistency is a notion similar to but weaker than the well-known notion of global consistency (cf. 
Definition 5). For RCC8, we identify two maximal distributive subalgebras which are not contained in any other distributive 
subalgebras, one contains 41 relations and the other contains 64. The 41 relations contained in the first subalgebra are 
exactly the convex RCC8 relations identified in [8].

In this paper, we are mainly interested in topological constraints, as these are the most important kind of qualitative 
spatial information. A large part of our results can easily be transplanted to other qualitative calculi like PA, IA, CRA and RA. 
In particular, let M be one of PA, IA, CRA and RA and S a distributive subalgebra of M over which path-consistency implies 
consistency. Then we can show that any path-consistent network over S is globally consistent and minimal.2 For ease of 
presentation, we state and prove these results only for RCC5 and RCC8, but indicate in Table 5 which result is applicable to 
which calculus.

1.1. Motivation

As in the case of propositional logic formulas [32], redundancy of qualitative constraints “often leads to unnecessary 
computation, wasted storage, and may obscure the structure of the problem” [5].3 Finding a prime subnetwork can be useful 
in at least the following aspects: a) computing and storing the relationships between spatial objects and hence saving space 
for storage and communication; b) facilitating comparison (or measure the distance) between different constraint networks; 
c) unveiling the essential network structure of a network (e.g., being a tree or a graph with a bounded tree-width); and 
d) adjusting geometrical objects to meet topological constraints [52].

To further motivate our discussion, we focus on one specific application to illustrate the application area a. and briefly 
explain how redundancy checking or finding a prime subnetwork helps to solve the application areas b–d.

Fig. 1 gives a small example of a set of spatial regions formed by the geographic “footprints” associated with placenames 
in the Southampton area of the UK. The footprints are derived from crowd-sourced data, formed from the convex hull of 
the sets of coordinate locations at which individuals used the placenames on social media (cf. [25]). Communicating and 
reasoning with the qualitative aspects of such data may require the storage and manipulation of large numbers of complex 
geometries with millions of vertices or large constraint networks with millions of relations.

Even for the small example in Fig. 1, the 84 footprints then require 84 ∗83/2 = 3486 stored relations. The moderate-sized 
footprint data set from which Fig. 1 is adapted contains a total of 3443 footprints which leads to a constraint network with 
5,925,403 relations. Similarly, a moderate-sized geographic data set of only 1559 statistical areas in Tasmania, explored 
further in later sections, contains in total 3,093,551 vertices. In the case of both footprints and statistical areas, many 
of the relationships can be inferred, and computing the prime subnetwork can potentially reduce the number of stored 

1 Here a subclass S is tractable if the consistency of any constraint network defined over S can be determined in polynomial time.
2 For PA, IA, CRA and RA, weakly global consistency is equivalent to global consistency.
3 It is worth noting that redundancy can also enhance propagation during computation (cf. [10]).
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Fig. 1. Examples of crowd-sourced geographic placename “footprints” around Southampton, UK.

relationships to be approximately linear in the number of regions (i.e., average-case space complexity of O (n)), as opposed to 
linear in the number of constraints (i.e., space complexity �(n2)) (see Section 5). In the case of the Southampton constraint 
network, 1324 redundant relations lead to a prime subnetwork with only 2162 relations needing to be stored. For the 
full data set, 5,604,200 redundant relations lead to a prime subnetwork of just 321,203 relations (in contrast to the full 
constraint network of almost 6 million relations).

As for application area b., suppose �, �′ are two constraint networks over the same set of n variables. The similarity 
of � and �′ can be measured by computing the distance of each constraint (xR y) in � with the corresponding constraint 
(xR ′ y) in �′ and sum them up (see e.g., [12,53,29]), i.e.,

dist(�,�′) =
∑

{dist(R, R ′) : (xR y) ∈ � and (xR ′ y) ∈ �′}.
Clearly, if � and �′ are complete networks, we need O (n2) additions. This number, however, can be significantly reduced if 
we use prime subnetworks. Let �pr and �′

pr be, respectively, prime subnetworks of � and �′ . We define

distpr(�,�′) =
∑

{dist(R, R ′) : (xR y) ∈ �, (xR ′ y) ∈ �′, (xR y) ∈ �pr or (xR ′ y) ∈ �′
pr}.

That is, the distance of � and �′ is approximated by distpr(�, �′), which only involves constraints in either �pr or �′
pr . 

If �pr and �′
pr are sparse enough, i.e., they contain a small number of (non-redundant) constraints, this will significantly 

simplify the comparison of two constraint networks.
In the case of application area c., a prime subnetwork unveils the essential network structure, or the skeleton, of a 

network, and the relation between a prime subnetwork and a constraint network is analogous to the relation between a 
spanning tree/forest [7] and a graph. Moreover, by the results of [6] and [26], we know it is tractable to determine the 
consistency of a constraint network with a bounded tree-width. Therefore, in general, checking the consistency of a prime 
subnetwork will be easier than checking the consistency of the network itself.

As for application area d., Wallgrün [52] proposed a method for exploiting qualitative spatial reasoning for topological 
adjustment of spatial data, which is based on a translation of the constraints in an input constraint network (say �) into 
systems of (in)equations. To simplify the complexity of topological adjustment, he suggested replacing � by an equivalent 
one (say �′) which has fewer redundant constraints. It is clear that the fewer constraints contained in �′ the better it is. 
A prime subnetwork is, roughly speaking, an optimal solution and contains fewest constraints. Therefore, replacing � with 
a prime subnetwork will significantly simplify the complexity of topological adjustment.
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1.2. Related works

Redundancy checking is an important task in AI research, in particular in knowledge representation and reasoning. For 
example, Ginsberg [21] and Schmolze and Snyder [44] designed algorithms for checking redundancy of knowledge bases; 
Gottlob and Fermüller [22] and Liberatore [32] analysed the computational properties of removing redundancy from a clause 
and a CNF formula, respectively; and Grimm and Wissmann [23] considered checking redundancy of ontologies.

In research on constraint satisfaction problems (CSPs), there are also many studies of constraint redundancy. While most 
of this research concerns redundant modelling (e.g., [10]), Chmeiss et al. [9] studied redundancy modulo a given local 
consistency. Their paper is close in spirit to ours. Let � be a CSP and φ a local consistency. Chmeiss et al. call a constraint c
in � φ-redundant iff (� \ {c}) ∪ {¬c} is φ-inconsistent. Because path-consistency implies consistency for RCC5 and RCC8 
constraint networks over their tractable subclasses [42], our notion of redundancy (when restricted to networks over these 
tractable subclasses) is equivalent to redundancy modulo path-consistency in the sense of [9].

In qualitative spatial reasoning, the redundancy problem was first considered by Egenhofer and Sharma [19]. They ob-
served that “For any scene description, the set of n2 binary topological relations between the n objects is redundant since 
some of these topological relations are always implied by others” and a minimal set (i.e., a prime subnetwork) contains 
k relations with (n − 1) ≤ k ≤ (n2 − n)/2. But they did not provide any efficient algorithm for deriving such a minimal set. 
In a recent paper, Wallgrün [52] proposed two algorithms to approximately find the prime subnetwork. The essence of the 
approximate algorithms is to replace Rij with the universal constraint if there exists k such that the weak composition of 
Rik and Rkj is contained in Rij . As was noted in [52], neither of these two algorithms is guaranteed to provide the optimal 
simplification. But it is worth noting that these two approximate algorithms are applicable to general constraint networks 
which are not necessarily over a distributive subalgebra. In Section 5, we will empirically compare our method with the 
methods of Wallgrün.

The property of distributivity was first used by van Beek [50] for IA, but the notion of distributive subalgebra is new. 
It is not difficult to show that PA, IA, RCC5 and RCC8 all have two maximal distributive subalgebras (see Appendix B for 
these subalgebras of RCC5 and RCC8). Very interestingly, the two maximal distributive subalgebras of IA are exactly the 
subalgebras CIA and SIA discussed in [2], where Amaneddine and Condotta proved that CIA and SIA are the only maximal 
subalgebras of IA over which path-consistent networks are globally consistent. For RCC8, the maximal distributive subalge-
bra D8

41 (see Appendix B) turns out to be the class of convex RCC8 relations found in [8], where Chandra and Pujari proved 
that path-consistent networks over D8

41 are minimal. The other maximal distributive subalgebra of RCC8, which contains 64 
relations, has not been reported before. Furthermore, we also show that every path-consistent constraint network � over 
a distributive subalgebra is weakly globally consistent and minimal. This has not been studied for RCC5 and RCC8 before. 
Based on subclasses for which path-consistency implies minimality, Amaneddine and Condotta [3] proposed an efficient 
algorithm for solving the minimal label problem. Their algorithm can also be applied to distributive subalgebras of RCC5 
and RCC8 (as well as PA, IA, RA, and CRA).

An extended abstract [15] of this paper was presented in KR-2014.
The remainder of this paper is structured as follows. We first recall the RCC5 and RCC8 constraint languages and intro-

duce the notion of distributive subalgebras in Section 2, and then define the key notions of redundant constraint and prime 
subnetwork in Section 3. In Section 4 we show that consistent RCC5 or RCC8 networks over distributive subalgebras have 
unique prime subnetworks. In Section 5 we present a detailed evaluation of a practical implementation of our algorithm, in 
comparison with the approximations proposed by Wallgrün [52]. Section 6 concludes the paper and outlines future research.

2. RCC5 and RCC8 constraint languages

Suppose U is a domain of spatial or temporal entities. Write Rel(U ) for the Boolean algebra of binary relations on U . 
A qualitative calculus M on U is defined as a finite Boolean subalgebra of Rel(U ) which has an atom that contains the 
identity relation on U and is closed under converse, i.e., R is in M iff its converse

R−1 = {(a,b) ∈ U × U : (b,a) ∈ R}
is in M [34]. A relation α in a qualitative calculus M is basic if it is an atom in M. Well-known qualitative calculi include, 
among others, PA [51], IA [1], CRA [33], RA [24], and RCC5 and RCC8 [41]. Note that the set of basic relations of a qualitative 
calculus is jointly exhaustive and pairwise disjoint (JEPD).

Since we are mainly interested in topological constraints, in this section, we only recall the RCC5 and RCC8 constraint 
languages and refer the reader to [11,30] for constraint languages that use other qualitative calculi. For convenience, we 
denote by RCC5/8 either RCC5 or RCC8.

2.1. RCC5 and RCC8

The RCC5/8 constraint language is a fragment of the Region Connection Calculus (RCC) [41], which is perhaps the most 
influential formalism for spatial relations in artificial intelligence. The RCC is a first order theory based on a binary connect-
edness relation and has canonical models defined over connected topological spaces [49,31].
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Let X be a connected topological space and U the set of nonempty regular closed sets of X . We assume U is infinite. 
We call each element in U a region. Note that a region may have multiple connected components as well as holes. Write P
for the binary “part-of” relation on U , i.e., xPy if x ⊆ y. Define

x PP y ≡ x P y ∧ ¬(y P x)

xOy ≡ (∃z)(z P x ∧ z P y)

x DR y ≡ ¬(xOy)

x PO y ≡ xOy ∧ ¬(x P y) ∧ ¬(y P x)

x EQ y ≡ x P y ∧ y P x

Write PP−1 for the converse of PP. Then

B5 = {DR,PO,EQ,PP,PP−1} (1)

is a JEPD set of relations, i.e., for any two regions a, b ∈ U , a, b is related by exactly one of the above five relations. We call 
the Boolean algebra generated by these five relations the RCC5 algebra, which consists of all relations that are unions of 
the five basic relations in (1). For convenience, we denote a non-basic RCC5 relation R as the subset of B5 it contains. For 
example, we write {DR, PO, PP} for the relation DR∪PO∪PP, and write �5 for the universal relation {DR, PO, PP, PP−1, EQ}.

RCC5 relations are in essence part-whole relations. We next introduce a topological relation model. For two regions a, b, 
we say a is connected to b, written a C b, if a ∩ b �=∅. Using C and P, the following topological relations can be defined [41]:

x DC y ≡ ¬(xCy)

x EC y ≡ x C y ∧ ¬(xOy)

x TPP y ≡ x PP y ∧ (∃z)(z EC x ∧ z EC y)

x NTPP y ≡ x PP y ∧ ¬(x TPP y)

Write TPP−1 and NTPP−1 for the converses of TPP and NTPP. Then

B8 = {DC,EC,PO,EQ,TPP,NTPP,TPP−1,NTPP−1} (2)

is a JEPD set of relations. We call the Boolean algebra generated by these eight relations the RCC8 algebra, which consists 
of all relations that are unions of the eight basic relations in (2). For convenience, we write �8 for the universal relation 
consisting of all basic relations in B8.

2.2. Weak composition table

While PA, IA, CRA and RA are all closed under composition, the composition of two basic RCC5/8 relations is not neces-
sarily a relation in RCC5/8 [17,31]. For example, the composition of DR and itself is not an RCC5 relation. This is because, for 
example, PO intersects with, but is not contained in, DR ◦ DR, where ◦ denotes the relational composition operator. In fact, 
there are three regions a, b, c such that aPOc and a DR b, b DR c. This shows that PO ∩ (DR ◦ DR) is nonempty. Let d, e be 
two regions such that d PO e and d ∪ e = R

2. Clearly, there is no region f such that d DR f and f DR e hold simultaneously. 
Therefore PO is not contained in DR ◦ DR.

For two RCC5/8 relations R and S , we call the smallest relation in RCC5/8 that contains R ◦ S the weak composition of R
and S , written R � S [17,31].

The weak compositions of RCC5 and RCC8 basic relations are summarised in, respectively, Tables 1 and 2 (from [41]). 
For each pair of RCC5/8 basic relations (α, β), the table cell corresponding to (α, β) contains all basic relations that are 
contained in α � β . In fact, suppose α, β , γ are three basic RCC5/8 relations. Then we have

γ ∈ α � β ⇔ γ ∩ (α ◦ β) �= ∅. (3)

The weak composition of two (non-basic) RCC5/8 relations R and S can be computed as follows:

R � S =
⋃

{α � β : α ∈ R, β ∈ S}.
Given (xR y) and (ySz), by definition, we have (xR � Sz), i.e., {(xR y), (ySz)} entails (xR � Sz).

From the RCC5 composition table, the following result is clear.

Lemma 1. For any nonempty RCC5 relation R, we have

PO ∈ PO � R, PO ∈ R � PO, and DR ∈ DR � R, DR ∈ R � DR.
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Table 1
Composition table for RCC5 relations.

� DR PO PP PP−1 EQ

DR DR,PO,PP,PP−1,EQ DR,PO,PP DR,PO,PP DR DR
PO DR,PO,PP−1 DR,PO,PP,PP−1,EQ PO,PP DR,PO,PP−1 PO
PP DR DR,PO,PP PP DR,PO,PP,PP−1,EQ PP
PP−1 DR,PO,PP−1 PO,PP−1 PO,PP,PP−1,EQ PP−1 PP−1

EQ DR PO PP PP−1 EQ

Table 2
Composition table for RCC8 relations.

� DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC DC,EC,PO DC,EC DC,EC DC,EC DC,EC DC DC DC
TPP,NTPP PO PO PO PO
TPP−1,EQ TPP TPP TPP TPP
NTPP−1 NTPP NTPP NTPP NTPP

EC DC,EC,PO DC,EC,PO DC,EC,PO EC,PO PO DC DC EC
TPP−1 EQ,TPP TPP TPP TPP EC
NTPP−1 TPP−1 NTPP NTPP NTPP

PO DC,EC,PO DC,EC,PO DC,EC,PO PO PO DC,EC,PO DC,EC,PO PO
TPP−1 TPP−1 TPP,TPP−1,EQ TPP TPP TPP−1 TPP−1

NTPP−1 NTPP−1 NTPP,NTPP−1 NTPP NTPP NTPP−1 NTPP−1

TPP DC DC DC,EC TPP NTPP DC,EC,PO DC,EC,PO TPP
EC PO,TPP NTPP EQ,TPP TPP−1

NTPP TPP−1 NTPP−1

NTPP DC DC DC,EC NTPP NTPP DC,EC DC,EC,PO NTPP
PO PO TPP,TPP−1

TPP TPP NTPP,EQ
NTPP NTPP NTPP−1

TPP−1 DC,EC,PO EC,PO PO PO,EQ PO TPP−1 NTPP−1 TPP−1

TPP−1 TPP−1 TPP−1 TPP TPP
NTPP−1 NTPP−1 NTPP−1 TPP−1 NTPP NTPP−1

NTPP−1 DC,EC,PO PO PO PO PO,TPP,EQ NTPP−1 NTPP−1 NTPP−1

TPP−1 TPP−1 TPP−1 TPP−1 NTPP,TPP−1

NTPP−1 NTPP−1 NTPP−1 NTPP−1 NTPP−1

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

Fig. 2. Illustration of the cycle law.

The following result will be used later.

Proposition 2. (See [16].) With the weak composition operation �, the converse operation −1, and the identity relation EQ, RCC5 and 
RCC8 are relation algebras. In particular, the weak composition operation � is associative. Moreover, for RCC5/8 relations R, S, T , we 
have the following cycle law

(R � S) ∩ T �= ∅ ⇔ (R−1 � T ) ∩ S �= ∅ ⇔ (T � S−1) ∩ R �= ∅. (4)

Fig. 2 gives an illustration of the cycle law. In the following, we assume � takes precedence over ∩.

2.3. Qualitative constraint network

Let M be a qualitative calculus with domain U . A qualitative constraint over M has the form (xR y), where x, y are 
variables taking values from U and R is a relation (not necessarily basic) in M. Given a set � of qualitative constraints 
over variables V = {v1, v2, . . . , vn} and an assignment σ : V → U , we say σ is a solution of � if (σ (vi), σ(v j)) satisfies the 
constraints in � that relate vi to v j for any 1 ≤ i, j ≤ n. We say � is consistent or satisfiable if it has a solution.
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Without loss of generality, we assume

• for each pair of variables vi, v j , there is at most one constraint in � that relates vi to v j ;
• for each pair of variables vi, v j , if there is no constraint in � that relates vi to v j , we say vi is related to v j by �, the 

universal relation in M;
• for each pair of variables vi, v j , the constraint in � that relates vi to v j is the converse of the constraint that relates 

v j to vi ;
• for each variable vi , the constraint in � that relates vi to itself is the identity relation (e.g., EQ in RCC5/8).

In this sense, we call � a network of constraints, and denote by for example Rij the constraint that relates vi to v j . 
Let � = {vi Ri j v j : 1 ≤ i, j ≤ n} and �′ = {vi R ′

i j v j : 1 ≤ i, j ≤ n} be two constraint networks over M. We say � and �′ are 
equivalent if they have the same set of solutions; and say � refines �′ if Rij ⊆ R ′

i j for all (i, j). We say a constraint network 
� is a basic network if each constraint is either a basic relation or the universe relation; and say a basic network is complete
if there are no universal relations. In this paper, we also call every complete basic network that refines � a scenario of �.

Suppose S is a subclass of M. We say a constraint network � = {vi Ri j v j : 1 ≤ i, j ≤ n} is over S if Rij ∈ S for every 
pair of variables vi, v j . The consistency problem over S , written as CSP(S), is the decision problem of the consistency of 
an arbitrary constraint network over S . The consistency problem over PA (i.e., CSP(PA)) is in P [51,50] and the consistency 
problems over IA, CRA, RA and RCC5/8 are NP-complete [40,33,4,43]. We say S is a tractable subclass of M if CSP(S) is 
tractable. It is well-known that IA, CRA, RA, and RCC5/8 all have large tractable subclasses, in particular, RCC8 has three 
maximal tractable subclasses that contain all basic relations [42] and RCC5 has only one [43,27].

The consistency of a qualitative constraint network can be approximately determined by a local consistency algorithm. 
We say a network � = {vi Ri j v j : 1 ≤ i, j ≤ n} is path-consistent4 if for every 1 ≤ i, j, k ≤ n, we have5

∅ �=Rij ⊆ Rik � Rkj.

In general, path-consistency can be enforced by calling the following rule until an empty constraint occurs (then � is 
inconsistent) or the network becomes stable.

Rij ← (Rik � Rkj) ∩ Rij,

where 1 ≤ i, j, k ≤ n are arbitrary. A cubic time algorithm, henceforth called the path-consistency algorithm or PCA, has been 
devised to enforce path-consistency. For any qualitative constraint network �, the PCA either detects inconsistency of � or 
returns a path-consistent network, written �p , which is equivalent to � and also known as the algebraic closure or a-closure
of � [34]. It is easy to see that in this case �p refines �, i.e., we have Sij ⊆ Rij for each constraint (vi Si j v j) in �p .

For RCC5/8 constraint networks, we have

Proposition 3. (See [42].) Let S be a tractable subclass of RCC5/8 which contains all basic relations. An RCC5/8 network � over S is 
consistent if applying PCA to � does not detect inconsistency.

In particular, we have

Proposition 4. (See [39].) A basic RCC5/8 network � is consistent if it is path-consistent.

Consistency is closely related to the notions of minimal network (cf. [8,20,36]) and global consistency.

Definition 5. Let M be a qualitative calculus with domain U . Suppose � = {vi Ti j v j : 1 ≤ i, j ≤ n} is a qualitative constraint 
network over M and V = {v1, . . . , vn}. For a pair of variables vi, v j ∈ V (i �= j) and a basic relation α in Tij , we say α is 
feasible if there exists a solution (a1, a2, . . . , an) in U of � such that (ai, a j) is an instance of α. We say � is minimal if for 
every pair of variables vi , v j (i �= j) every basic relation α in Tij is feasible.

We say � is weakly globally consistent (globally consistent, respectively) if any consistent scenario (solution, respectively) 
of �↓V ′ can be extended to a consistent scenario (solution, respectively) of �, where V ′ is any nonempty subset of V and 
�↓V ′ is the restriction of � to V ′ .

The notion of weakly global consistency is weaker than the notion of global consistency. The latter requires that every 
partial solution can be extended to obtain a global solution, which is too strong for even basic RCC5/8 networks. For 
example, consider the RCC5 constraint network {v1 PO v2, v1 DR v3, v2 DR v3}. As PO is not contained in the composition of 

4 For PA, IA, CRA and RA, since weak composition is composition, this definition of path-consistency is equivalent to that for finite constraint satisfaction 
problems [38]; for RCC5/8, the two definitions are different mainly in the use of weak composition instead of composition.

5 Recall we have assumed that R ji is the converse of Rij for each pair of variables vi , v j .
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DR and DR (cf. the example shown in Section 2.2), this network is weakly globally consistent but not globally consistent. 
The two notions are, however, equivalent for PA, IA, CRA and RA, as consistent basic networks over these calculi are all 
globally consistent.

While every consistent RCC5/8 constraint network has a unique minimal network, it is in general NP-hard to compute 
it [36]. The following result shows that every weakly globally consistent network is also minimal.

Proposition 6. Let M be a qualitative calculus with domain U . Suppose � = {vi Ti j v j : 1 ≤ i, j ≤ n} is a qualitative constraint network 
over M. If � is weakly globally consistent, then it is minimal.

Proof. For every pair of variables vi, v j (i �= j) and every basic relation α in Tij , it is clear that {viαv j} is a consistent sce-
nario of �↓{vi ,v j} . Because � is weakly globally consistent, we can extend this to a consistent scenario of �. In other words, 
there exists a solution (a1, a2, . . . , an) of � in U such that (ai, a j) is an instance of α. This shows that � is minimal. �

In what follows, we write �m for the minimal network of �, and �p for the a-closure of �.

2.4. Distributive subalgebra

As mentioned before, RCC5 has a unique maximal tractable subclass which contains all basic relations [43,27]. This 
subclass, written H5, contains all RCC5 relations except

{PP,PP−1}, {PP,PP−1,EQ}, {DR,PP,PP−1}, {DR,PP,PP−1,EQ}.
Write B̂5 for the closure of B5 under converse, intersection, and weak composition in RCC5. Then B̂5 contains all basic 

relations as well as

{PO,PP}, {PO,PP−1}, {PO,PP,PP−1,EQ},
{DR,PO,PP}, {DR,PO,PP−1}, {DR,PO}, �5,

where �5 = {DR, PO, PP, PP−1, EQ}. It is interesting to note that in B̂5 the weak composition operation is distributive over 
nonempty intersections in the following sense.

Lemma 7. Let R, S, T be three relations in B̂5. Suppose S ∩ T is nonempty. Then we have

R � (S ∩ T ) = R � S ∩ R � T and (S ∩ T ) � R = S � R ∩ T � R.

We note the requirement that S ∩ T is nonempty is necessary, as we have for example {DR} � {DR} ∩ {DR} � {PO} =
{DR, PO, PP} �=∅ while {DR} � ({DR} ∩ {PO}) = {DR} �∅ =∅.

In what follows, we call such a subclass a distributive subalgebra. Formally, we have

Definition 8. Let M be a qualitative calculus. A subclass S of M is called a distributive subalgebra if

• S contains all basic relations; and
• S is closed under converse, weak composition, and intersection; and
• weak composition distributes over nonempty intersections of relations in S .

Write B̂l for the closure of Bl in RCCl (l = 5, 8) under converse, weak composition, and intersection. It is straightforward 
to check that both B̂5 and B̂8 are distributive subalgebras. This shows that the above definition is well-defined and every 
distributive subalgebra of RCCl contains B̂l as a subclass.

We say a distributive subalgebra S is maximal if there is no other distributive subalgebra that properly contains S . To 
find all maximal distributive subalgebras of RCC5 and RCC8, we start with B̂l and then try to add other relations to this 
subalgebra to get larger distributive subalgebras. It turns out that RCC5 has only two maximal distributive subalgebras, 
denoted by D5

14 and D5
20. Similarly, RCC8 also has only two, denoted by D8

41 and D8
64. In Appendix B we list all relations 

contained in these subalgebras, and explain how we find these subalgebras and why there are no other maximal distributive 
subalgebras.

The next lemma summarises one useful property of distributive subalgebras.

Lemma 9. Let S be a distributive subalgebra of RCC5/8. Suppose R, S, T are three relations in S . Then R ∩ S ∩ T = ∅ iff R ∩ S = ∅, 
or R ∩ T =∅, or S ∩ T =∅.
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Fig. 3. An RCC5 network, where (v1 PP v2) is redundant.

Proof. We only need to show the “only if” part.
For two RCC5/8 relations P , Q , we first note that P ∩ Q �= ∅ iff EQ ∈ Q −1 � P . In fact, from P ∩ Q �= ∅, we know 

there exist two regions a, b such that (a, b) ∈ P ∩ Q . This implies that (b, b) ∈ Q −1 ◦ P as (b, a) ∈ Q −1 and (a, b) ∈ P . 
Hence EQ ∩ Q −1 ◦ P is nonempty and, by the definition of weak composition and (3), EQ ∈ Q −1 � P . On the other hand, 
if EQ ∈ Q −1 � P , then EQ ∩ Q −1 ◦ P is nonempty. This implies that there exist two regions a, b such that (b, a) ∈ Q −1 and 
(a, b) ∈ P . Thus (a, b) ∈ P ∩ Q and, hence, P ∩ Q �=∅.

Suppose R ∩ S ∩ T is empty but R ∩ S, R ∩ T and S ∩ T are all nonempty. By the above property, we have EQ ∈ T −1 � R
and EQ ∈ T −1 � S . Because R, S, T are relations in the distributive subalgebra S and R ∩ S �= ∅, we know

EQ ∈ (T −1 � R) ∩ (T −1 � S) = T −1 � (R ∩ S).

Thus T −1 � (R ∩ S) �=∅ and, hence, R ∩ S ∩ T �=∅. A contradiction. �
The above result does not hold in general for non-distributive subalgebras. For example, consider the RCC5 relations 

R = {PO, PP}, S = {DR, PP}, T = {DR, PO, PP−1}. R, S, T are all in H5 but S is not in any distributive subalgebra of RCC5. 
We have R ∩ S ∩ T = ∅ but R ∩ S = {PP}, R ∩ T = {PO}, and S ∩ T = {DR} are all nonempty.

It is worth noting that all distributive subalgebras of RCC5 are contained in H5 , the maximal tractable subclass of RCC5 
identified in [43,27], and all distributive subalgebras of RCC8 are contained in Ĥ8, one of the three maximal subclasses of 
RCC8 identified in [42]. In particular, by Proposition 3, we have

Corollary 10. Let S be a distributive subalgebra of RCC5/8. Then every path-consistent network over S is consistent.

3. Redundant constraint and prime subnetwork

In this section we first give definitions of redundant constraints and prime subnetworks and then discuss how to find a 
prime subnetwork in general.

Definition 11. Let M be a qualitative calculus with domain U . Suppose � is a qualitative constraint network over variables 
V = {v1, . . . , vn}. We say � entails a constraint (vi R v j), written � |� (vi R v j), if for every solution {a1, . . . , an} of � in U we 
have (ai, a j) ∈ R . A constraint (vi R v j) in � is redundant if � \ {(vi R v j)} entails (vi R v j). We say � is reducible if it has a 
redundant constraint, and say � is irreducible or prime if otherwise. We say a subset �′ of � is a prime subnetwork of � if 
�′ is irreducible and equivalent to �.

Note that each universal constraint (vi � v j) in � is, by definition, a redundant constraint in �. We call this a trivial
redundant constraint. In the following, we give an example of non-trivial redundant RCC5 constraints.

Example 12. Suppose

� = {v1 PP v2, v1 PP v5, v3 PP v1, v4 PP v2, v5{DR,PP}v2, v3POv4}.
After enforcing path-consistency to �\{(v1 PP v2)}, we have (v5 PP v2) and hence (v1 PP v2). This shows that �\{(v1 PP v2)}
entails (v1 PP v2) and hence (v1 PP v2) is redundant (Fig. 3). Moreover, (v1 PP v2) is the only non-trivial redundant con-
straint in � and � \ {(v1 PP v2)} is the unique prime subnetwork of �.

Given a qualitative constraint network �, a very interesting question is, how to find a prime subnetwork of �? This problem 
is clearly at least as hard as determining if � is reducible. Similar to the case of propositional logic formulae [32], we have 
the following result for RCC5/8.

Proposition 13. Let � be an RCC5/8 network and suppose (xR y) is a constraint in �. It is co-NP-complete to decide if (xR y) is 
redundant in �.



60 S. Li et al. / Artificial Intelligence 225 (2015) 51–76
Proof. First of all, we note that (xR y) is redundant in � iff (� \ {(xR y)}) ∪ {xRc y} is inconsistent, where Rc is the com-
plement of R . Since it is NP-complete to decide if an RCC5/8 network is consistent, we know this redundancy problem 
(i.e., the problem of determining if a constraint is redundant in a network) is in co-NP. On the other hand, it is easy to 
construct a polynomial many-one reduction from the inconsistency problem of RCC5/8 to the redundancy problem. Fix two 
variables x, y. Suppose � is an arbitrary RCC5/8 network over V and x, y are two variables in V . Then � is inconsistent iff 
� \ {(xR y)} |� (xRc y) iff (xRc y) is redundant in (� \ {(xR y)}) ∪ {xRc y}. This shows that the redundancy problem is co-NP 
complete. �

Similarly, we can show that the redundancy problems for IA, CRA, and RA are also co-NP-complete and, because the 
consistency problem of PA is in P, the redundancy problem for PA is in P.

To determine if a network � is reducible, we need in the worst case check for O (n2) constraints in � whether they are 
redundant in �. By the above proposition, this is a decision problem in 
P

2 , the class of problems solvable in polynomial 
time with an oracle for some NP-complete problem. Finding a prime subnetwork of � is more complicated. A naive method 
is to remove redundant constraints iteratively from � until we get an irreducible network. Let c1, c2, . . . , ck be the sequence 
of all non-trivial constraints in �. Write �0 = �, and define

�i+1 =
{

�i \ {ci+1} if ci+1 is redundant in �i;
�i if otherwise

(5)

for 0 ≤ i ≤ k − 1. Then it is easy to show that �k is a prime subnetwork of �. Suppose we have an oracle which can tell 
if a constraint is redundant in a network. Then �k can be constructed in O (n2) time. We note that the construction of the 
prime subnetwork �k depends on the order of the constraints c1, c2, . . . , ck .

Despite that it is in general co-NP-complete to determine if a constraint is redundant, we have a polynomial time 
procedure if the constraints are all taken from a tractable subclass of RCC5/8.

Proposition 14. Let S be a tractable subclass of RCC5/8 that contains all basic relations. Suppose � is a network over S . Then in O (n3)

time we can determine whether a constraint is redundant in � and in O (n5) time find all redundant constraints of �. In addition, 
a prime subnetwork for � can be found in O (n5) time.

Proof. Suppose (xR y) is a constraint in � and let �′ ≡ � \ {(xR y)}. To determine if (xR y) is redundant in �, we check 
for each basic RCC5/8 relation γ that is not in R , whether �′ ∪ {(xγ y)} is consistent. If the answer is confirmative for one 
γ (note that RCC5 has five and RCC8 has eight basic relations), then (xR y) is not redundant in �. By Proposition 3, the 
consistency of �′ ∪ {(xγ y)} can be determined by enforcing path-consistency and hence can be determined in cubic time. 
Since there are O (n2) constraints in �, in O (n5) time we can find all redundant constraints of �.

Suppose c1, c2, . . . , ck are all non-trivial constraints of �. We define �0 = �, and set �i+1 as in (5). Note that if a 
constraint is non-redundant in � then it is also non-redundant in any subset of �. It is straightforward to show that �k is 
a prime subnetwork of �. Since we can determine in cubic time whether a constraint is redundant in a network over S , 
�k can be computed in k × O (n3) time, which is bounded by O (n5). �

Similar conclusions apply to other calculi. For example, since the consistency problem of PA can be solved in O (n2) time, 
the redundancy problem of PA can be solved in O (n2) time and we can find a prime subnetwork for any consistent PA 
network in O (n4) time.

It is often interesting to know when a constraint is contained in some or all prime subnetworks. The following notion 
will be helpful in partially answering questions like this.

Definition 15. Let M be a qualitative calculus and suppose � is a qualitative constraint network over M. Write �c for the 
set of non-redundant constraints in �. We call �c the core of �.

It is easy to see that the core of � is contained in every prime subnetwork of �. Are prime subnetworks unique? And, is the 
core itself always a prime subnetwork? The following example shows that in general this is not the case.

Example 16. Suppose � is the RCC5 network specified as below

{v1 P v2, v2 P v3, v3 P v1, v1 PO v4, v2 PO v4},
where P = {PP, EQ}. Then both PO constraints in � are redundant. This is because, enforcing path-consistency to 
{v1 P v2, v2 P v3, v3 P v1} we have v1 EQ v2, v1 EQ v3, v2 EQ v3. Therefore, knowing one PO constraint will infer the other. 
Moreover, � has no other redundant constraints and {v1 P v2, v2 P v3, v3 P v2} is the core of � but not equivalent to �. It is 
easy to see that �c ∪ {v1 PO v4} and �c ∪ {v2 PO v4} are two prime subnetworks of �.
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Note that this occurs because there is a cycle of P constraints in �, i.e., � is P-cyclic. In the following we often assume 
that � has the following property:

(∀i, j)[(i �= j) → (� �|� (vi EQ v j))]. (6)

This implies that no two variables are forced to be identical. We call a network which satisfies (6) an all-different constraint 
network. Note that an all-different network is always consistent, as an inconsistent network entails everything.

The following proposition shows that the all-different requirement is not restrictive at all for constraint networks over a 
tractable subalgebra.

Proposition 17. Let S be a tractable subclass of RCC5/8 that contains all basic relations. Suppose � = {vi Ri j v j : 1 ≤ i, j ≤ n} is a 
consistent network over S and �p its a-closure. Then, for any i �= j, � |� (vi EQ v j) iff (vi EQ v j) is in �p .

Proof. The sufficiency part is clear. We only need to show the necessity part. Suppose � |� (vi EQ v j). We show (vi EQ v j)

is in �p . Suppose �p = {vi Si j v j : 1 ≤ i, j ≤ n}. Because � is consistent, �p is path-consistent and each Sij is nonempty. By 
Theorem 21 of [42], �p has a consistent scenario �∗ = {viαi j v j : 1 ≤ i, j ≤ n}, where αi j = EQ iff Sij = EQ. In other words, if 
Sij �= EQ, i.e., (vi EQ v j) is not in �p , then αi j cannot be EQ and hence � does not entail (vi EQ v j). This is a contradiction 
and hence (vi EQ v j) is in �p . �

The above proposition shows that whether a constraint network is all-different can be answered by enforcing path-
consistency. When a constraint network is not all-different, we can amalgamate those identical variables and thus obtain an 
equivalent but simplified all-different network.

In the next section we will show that, if � is an all-different constraint network over a distributive subalgebra of RCC5/8, 
then �c is the unique prime subnetwork of �. This is quite surprising, as, in general, knowing that (xR y) and (uS v) are 
both redundant in � does not imply that (uS v) is also redundant in � \ {(xR y)}.

4. Networks over a distributive subalgebra

In this section, we assume S is a distributive subalgebra of RCC5/8. Let � be an all-different network over S . Because 
� satisfies (6), there is in particular no EQ constraint in �. We show that �c , the core of �, is equivalent to � and hence 
the unique prime subnetwork of �. Using this result, we then further give a cubic time algorithm for computing the unique 
prime subnetwork of �.

To prove that �c is equivalent to �, we need two important results. The first result, stated in Theorem 19, shows that 
the a-closure of � is minimal, i.e. �p is exactly �m . The second result, stated in Proposition 28, shows that a particular 
constraint (xR y) is redundant in � iff its corresponding constraint in �p is redundant in �p . Our main result, stated in 
Theorem 29, then follows directly from these two results.

In Section 4.1, we prove Theorem 19; in Section 4.2, we characterise relations in such a minimal network in terms of the 
weak compositions of paths from x to y in �; and in Section 4.3 we prove Proposition 28. Using these results, we show in 
Section 4.3 that �c is equivalent to � and hence the unique prime subnetwork of � and give in Section 4.4 a cubic time 
algorithm for computing �c .

4.1. The A-closure of � is minimal

To prove that a network is minimal, by Proposition 6, we only need to show that it is weakly globally consistent in the 
sense of Definition 5.

Theorem 18. Let S be a distributive subalgebra of RCC5/8. Suppose � = {vi Ri j v j : 1 ≤ i, j ≤ n} is a path-consistent network over S . 
Then � is weakly globally consistent.

Proof. Write Vk = {v1, v2, . . . , vk} for 1 ≤ k < n. Without loss of generality, we only show that every consistent scenario 
of �↓Vk

can be extended to a consistent scenario of �↓Vk+1
. Suppose 
 = {viδi j v j : 1 ≤ i, j ≤ k} is a consistent scenario 

of �↓Vk
. Then each δi j is a basic relation in Rij . For each 1 ≤ i ≤ k, write Ti for Rk+1,i (see Fig. 4 for illustration). Let 

T̂ i = ⋂k
j=1 T j � δ ji .

We assert that each T̂ i is nonempty. By Lemma 9, it is easy to show by induction on k that, for any set {W1, W2, . . . , Wk}
of k ≥ 3 nonempty relations in S , 

⋂k
i=1 W i �= ∅ iff W i ∩ W j �= ∅ for any 1 ≤ i �= j ≤ n. Therefore, to show T̂ i �= ∅, we only 

need to show T j �δ ji ∩T j′ �δ j′ i �= ∅ for any 1 ≤ i ≤ n and any 1 ≤ j �= j′ ≤ n. Applying the cycle law as stated in Proposition 2
twice, we have
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Fig. 4. Illustration of �↓Vk+1
in the proof of Theorem 18.

Fig. 5. An example showing that Theorem 19 does not hold for non-distributive RCC5/8 subalgebras: a path-consistent constraint network � over H5.

T j � δ ji ∩ (T j′ � δ j′i) �= ∅ iff (T j′ � δ j′i) � (δ ji)
−1 ∩ T j �= ∅

iff T j′ � (δ j′i � δi j) ∩ T j �=∅

iff T −1
j′ � T j ∩ (δ j′ i � δi j) �= ∅

iff (R j′,k+1 � Rk+1, j) ∩ (δ j′ i � δi j) �= ∅.

Note here (δ ji)
−1 = δi j and T −1

j′ = (Rk+1, j′ )−1 = R j′,k+1. Because δ j′ j ⊆ R j′ j , we know δ j′ j ∩ R j′ j �= ∅. Since both 
 and � are 
path-consistent, we also have δ j′ j ⊆ δ j′ i � δi j and R j′ j ⊆ R j′,k+1 � Rk+1, j . Therefore, we have (R j′,k+1 � Rk+1, j) ∩ (δ j′ i � δi j) ⊇
R j′ j ∩ δ j′ j �=∅ and hence T j � δ ji ∩ T j′ � δ j′ i �=∅. This shows that T̂ i �= ∅ for any 1 ≤ i ≤ n.

To show that �↓Vk
∪ {vk+1 T̂ i vi : 1 ≤ i ≤ k} is path-consistent, we only need to show for 1 ≤ i �= i′ ≤ k that T̂ i � δii′ ⊇ T̂ i′ . 

By the distributivity and δ ji � δii′ ⊇ δ ji′ we have

T̂ i � δii′ = (

k⋂
j=1

T j � δ ji) � δii′ =
k⋂

j=1

T j � (δ ji � δii′) ⊇
k⋂

j=1

T j � δ ji′ = T̂ i′ .

This shows that �↓Vk
∪ {vk+1 T̂ i vi : 1 ≤ i ≤ k} is path-consistent and hence, by Corollary 10, has a consistent scenario 
′ . It 

is clear that 
′ extends 
 from Vk to Vk+1. Because �↓Vk
∪ {vk+1 T̂ i vi : 1 ≤ i ≤ k} refines �↓Vk+1

, we know �↓Vk+1
has a 

consistent scenario which extends 
. �
Together with Proposition 6, the above result immediately implies that the a-closure of a consistent network � over a 

distributive subalgebra is minimal.

Theorem 19. Let S be a distributive subalgebra of RCC5/8. Suppose � is a consistent network over S and �p its a-closure. Then �p is 
identical to the minimal network of �.

The above results can also be extended to distributive subalgebras of PA, IA and CRA, but do not hold in general for 
non-distributive subalgebras. Consider the network � over H5 shown in Fig. 5, which is inspired by a network over PA 
in [50]. The network is path-consistent but not minimal. In fact, the relation EQ in the constraint (v1{PP, EQ}v2) is not 
feasible, i.e., there exists no solution of � in which (v1EQv2) is satisfied. By Proposition 6, we know � is not weakly 
globally consistent.

In the next subsection, we characterise relations in such a minimal network in terms of the weak compositions of paths 
from x to y in �.

4.2. Weak compositions of paths

Let M be a qualitative calculus. A qualitative constraint network � is in essence a labelled directed graph consisting of 
the variables in � as vertices and qualitative relations in M between the variables as labels. A path π from a variable x
to another variable y is a sequence of constraints c1, c2, . . . , cs such that ci = (ui−1 Riui) and u0 = x, us = y. The weak 
composition of path π is the qualitative relation in M defined as
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Fig. 6. An example showing that Lemmas 20 and 22 do not hold for non-distributive RCC5/8 subalgebras: (a) a constraint network � over H5; and (b) its 
a-closure �p .

CT(π) ≡ R1 � R2 � . . . � Rs.

Since the weak composition operation is associative, the relation CT(π) defined above is unambiguous. We say a path π is 
non-trivial if CT(π) is not the universal relation. Note that (x CT(π)y) is entailed by those constraints in π .

Suppose � is a constraint network over a distributive subalgebra of RCC5/8, (xR y) and (xS y) are respectively the con-
straints in � and �p that relate x to y. We next show that S is the intersection of the weak compositions of all paths from 
x to y in �. Note that such a path may contain (xR y) as an (or the unique) edge.

Lemma 20. Let S be a distributive subalgebra of RCC5/8. Suppose � is a consistent network over S and �p its a-closure. Assume 
furthermore that (xS y) is a constraint in �p . Then S is the intersection of the weak compositions of all paths from x to y in �.

Proof. See Appendix A. �
The distributive property is necessary in the above lemma. Consider the consistent RCC5 network � over H5 shown in 

Fig. 6. The intersection of the weak compositions of all paths from v1 to v2 in � is {DR, PP}, while the relation that relates 
v1 to v2 in �p is {DR}, which is strictly contained in {DR, PP}.

The following lemma shows that the weak composition of a cycle contains EQ and PO. This result holds for arbitrary 
RCC5/8 networks which are all-different.

Lemma 21. Suppose � is an all-different RCC5/8 network and π = (c1, c2, . . . , cs) (s ≥ 2) a path from x to itself in � such 
that ci = (ui−1 Riui), u0 = us = x. Then CT(π) contains O5 ≡ {PO, PP, PP−1, EQ} if � is an RCC5 network, and contains O8 ≡
{PO, TPP, TPP−1, EQ} if � is an RCC8 network.

Proof. Write y for u1. Let R = R1 and T = CT(π>1) = R2 � R3 � . . . � Rs . Note that y �= x and π>1 is a path from y to x. 
Suppose S is the relation from x to y in the a-closure of �. Because � is consistent, we know S is nonempty and S ⊆ R , 
S ⊆ T −1. Furthermore, since � is all-different and hence satisfies (6), we know S �= {EQ}. As a consequence, we know there 
is a basic RCC5/8 relation α �= EQ which is contained in R ∩ T −1. Therefore, CT(π) = R � T ⊇ α � α−1. By checking the 
composition tables of RCC5 and RCC8, we have that α � α−1 (hence CT(π)) contains O5 (O8, respectively) for any RCC5 
(RCC8, respectively) basic relation α �= EQ. �

The following lemma provides a finer characterisation of the constraint (xS y) in �p in terms of paths in � that do not 
contain the constraint (xR y).

Lemma 22. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different network over S and �p its a-closure. Assume 
that (xR y) and (xS y) are the constraints from x to y in � and �p respectively. Then S = R ∩ W , where W is the intersection of the 
weak compositions of all paths from x to y in � \ {(xR y)}.

Proof. See Appendix A. �
As Lemma 20, the above result does not hold in general for non-distributive subalgebras. Consider the network shown 

in Fig. 6 and the constraint from v1 to v2. We have R = {DR, PP}, S = {DR}, but R ∩ W = {DR, PP} �= S .

4.3. Correspondence between redundant constraints in � and �p

Suppose � is an RCC5/8 network over a distributive subalgebra S and �p its a-closure. Let (xR y) and (xS y) be the 
constraints from x to y in � and �p respectively. We prove that (xR y) is redundant in � iff (xS y) is redundant in �p . To 
this end, we need several lemmas.

The following two lemmas show that a constraint (xR y) in � is redundant iff R contains the intersection of the weak 
compositions of all paths from x to y in � \ {(xR y)}.
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Fig. 7. An example showing that Lemmas 24 and 25 do not hold for non-distributive RCC5/8 subalgebras: a path-consistent constraint network � = �p

over H5.

Lemma 23. Suppose � is a consistent RCC5/8 network and (xR y) a constraint in �. Assume that W is the intersection of the weak 
compositions of all paths from x to y in � \ {(xR y)}. Then (xR y) is redundant in � if R ⊇ W .

Proof. Write �′ ≡ � \ {(xR y)}. For every path π from x to y in �′ , we know �′ entails (x CT(π)y). By the definition of W , 
this implies that �′ entails (xW y). Suppose R ⊇ W . It is clear that every solution of �′ also satisfies (xR y), and therefore, 
(xR y) is redundant in �. �
Lemma 24. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different network over S and (xR y) is a constraint in �. 
Assume that W is the intersection of the weak compositions of all paths from x to y in � \ {(xR y)}. Then (xR y) is redundant in � only 
if R ⊇ W .

Proof. Suppose (xR y) is redundant in �. Then each solution of �′ = � \ {(xR y)} also satisfies (xR y). Write (xT y) for the 
constraint between x and y in �′

p , the a-closure of �′ . By Lemma 22 we know T = W . Furthermore, by Theorem 19, we 
know each basic relation in T is feasible in �′ . This implies that T = W is contained in R . �

This result does not hold in general for non-distributive subalgebras. Consider the constraint network � over H5 shown 
in Fig. 7 and the constraint from v1 to v2. It is easy to show that � is path-consistent, i.e., � = �p , and (v1{PP}v2) is 
redundant in �. Furthermore, we have W = {PP, EQ}, which is not contained in R = {PP}.

The above characterisation of redundant constraints can be strengthened if � is itself path-consistent.

Lemma 25. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different and path-consistent network over S . Then a 
constraint (vi Ri j v j) is redundant in � iff Rij = ⋂{Rik � Rkj : k �= i, j}, i.e., Rij is the intersection of the weak compositions of all paths 
from vi to v j which have length 2.

Proof. Let W ij be the intersection of the weak compositions of all paths from vi to v j in � \ {(vi Ri j v j)}. It is clear W ij ⊆⋂{Rik � Rkj : k �= i, j}.
Suppose Rij = ⋂{Rik � Rkj : k �= i, j}. We have Rij ⊇ W ij . By Lemma 23, this immediately implies that (vi Ri j v j) is redun-

dant in �.
On the other hand, suppose (vi Ri j v j) is redundant in �. We show Rij = ⋂{Rik � Rkj : k �= i, j}. By Lemma 24 we know 

Rij ⊇ W ij . Let π = (c1, c2, . . . , cs) (s ≥ 2) be an arbitrary path from vi to v j in � \ {(vi Ri j v j)} such that ck = (uk−1 Rkuk), 
u0 = vi , us = v j . Then CT(π) = R1 � CT(π>1). Suppose u1 = vi′ . Then R1 = Rii′ and π>1 is a path from vi′ to v j . Because 
� is path-consistent, we know by Lemma 20 that Ri′ j is contained in CT(π>1). This implies that CT(π) contains Rii′ � Ri′ j
and, therefore, 

⋂{Rik � Rkj : k �= i, j}. Due to the arbitrariness of π , W ij also contains 
⋂{Rik � Rkj : k �= i, j}. Since Rij ⊇ W ij , 

we have Rij ⊇ ⋂{Rik � Rkj : k �= i, j}. By the path-consistency of �, we have Rij ⊆ Rik � Rkj for every k �= i, j. This shows 
Rij = ⋂{Rik � Rkj : k �= i, j}. �

This result does not hold in general for non-distributive subalgebras. Again, consider the path-consistent RCC5 network �

over H5 shown in Fig. 7. Although (v1 PP v2) is redundant in �, R13 � R32 ∩ R14 � R42 = {PP, EQ} strictly contains {PP}.
We next show that (xR y) is redundant in � iff (xS y) is redundant in �p .

Lemma 26. Suppose � is an all-different RCC5/8 network. Assume that (xR y) and (xS y) are the constraints from x to y in � and �p

respectively. Then (xR y) is redundant in � only if (xS y) is redundant in �p .

Proof. Write �′ and �′′ for � \ {(xR y)} and �p \ {(xS y)} respectively.
Suppose (xR y) is redundant in �. Then �′ entails (xR y). Note that �′′ refines �′ . We know every solution of �′′ is a 

solution of �′ , hence also satisfies (xR y). In other words, each solution of �′′ is a solution of �. Since � is equivalent to its 
a-closure, we know each solution of �′′ is also a solution of �p , hence also satisfies (xS y). Therefore, (xS y) is redundant 
in �p . �
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Fig. 8. An example showing that Proposition 27 does not hold for non-distributive RCC5/8 subalgebras: (a) a constraint network � over H5; (b) its 
a-closure �p ; (c) � \ {(v3PPv2)}.

Fig. 9. An example showing that Theorem 29 does not hold for non-distributive RCC5/8 subalgebras: (a) a constraint network � over H5; (b) the core �c

of �.

Proposition 27. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different network over S . Assume that (xR y) and 
(xS y) are the constraints from x to y in � and �p respectively. Then (xR y) is redundant in � iff (xS y) is redundant in �p .

Proof. See Appendix A. �
The result does not hold in general for non-distributive subalgebras. Consider the constraint network � over H5 shown 

in Fig. 8 and the constraint from v3 to v2. It is clear that the constraint (v3PPv2) is redundant in �p . However, (v3PPv2)

is not redundant in �. This is because (v3 DR v2) is consistent with � \ {(v3PPv2)} (shown in Fig. 8(c)). Actually, it is easy 
to construct a solution {a1, a2, a3, a4} of � \ {(v3PPv2)} in which (a3 PP a1), (a1 PP a4) and (a2 DR a j) for j = 1, 3, 4.

Recall that Theorem 19 asserts that �p is minimal. Proposition 27 can be rephrased as follows:

Proposition 28. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different network over S and �m the minimal 
network of �. Assume that (xR y) and (xS y) are the constraints from x to y in � and �m respectively. Then (xR y) is redundant in � iff 
(xS y) is redundant in �m.

As a consequence, we have our main result.

Theorem 29. Let S be a distributive subalgebra of RCC5/8. Suppose � is an all-different network over S and �c the core of �. Then �c

is equivalent to � and hence the unique prime subnetwork of �.

Proof. Suppose c1, c2, . . . , ck are the redundant constraints of �. Let �0 = � and �i+1 = �i \ {ci+1} for 0 ≤ i ≤ k. Note that 
�k is precisely �c , the core of �. Suppose 0 ≤ i < k is the largest integer such that �i is equivalent to �.

Suppose ci+1 = (xR y) and (xS y) is the corresponding constraint in �m , the minimal network of �. Note that ci+1 is 
also in �i . By Proposition 28 we know (xS y) is redundant in �m since (xR y) is redundant in �. Because �m is also the 
minimal network of �i , by Proposition 28 again we know (xR y) is redundant in �i . This means that �i+1 is equivalent 
to �i , hence �. This contradicts our assumption that i < k is the largest integer such that �i is equivalent to �. Therefore, 
i = k and �c is equivalent to �. �

The above result does not hold in general for non-distributive subalgebras. For example, consider the RCC5 network �
over H5 shown in Fig. 9(a). The core �c (shown in Fig. 9(b)) is not equivalent to and hence not a prime subnetwork of �. 
This is because (v3 DR v2) is feasible in �c but not in �.

Similar to Proposition 14, we can show that the core of an RCC5/8 network over a tractable subclass can be found in 
O (n5) time. In the next subsection we show this can be improved if the network is over a distributive subalgebra.
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Algorithm 1: Algorithm for finding all redundant constraints in an all-different constraint network over a distributive 
subalgebra S of RCC5/8, where �l is the universal relation in RCCl.

Input: An all-different consistent RCC5/8 network � = {vi Ri j v j : 1 ≤ i, j ≤ n} over S and V = {vi : 1 ≤ i ≤ n}.
Output: Redun: the set of redundant constraints of �, and Core: the core of �.

1 Redun ←∅;
2 Core ← �;
3 �p ← the a-closure of �;
4 for each constraint (vi Si j v j) ∈ �p do
5 Q ij ← �l ;
6 for each variable vk ∈ V \ {vi , v j} do
7 Q ij ← Q ij ∩ Sik � Skj ;
8 if Q ij = Sij then
9 Redun ← Redun ∪ {(vi Ri j v j)};

10 Core ← Core \ {(vi Ri j v j)};
11 break the inner loop;
12 end
13 end
14 end

Fig. 10. Example constraint network illustrating the differences between the prime subnetwork, and the subnetworks generated by the Simple and Sim-
pleExt algorithms [52]. Redundant constraints found in the prime subnetwork only are shown with wide dashes; constraints found in both the prime and 
SimpleExt subnetworks are shown with narrow dashes; and constraints found in the prime, SimpleExt, and Simple subnetworks are shown with dotted 
lines.

4.4. A cubic time algorithm for computing the core of �

Suppose � is an all-different network over a distributive subalgebra of RCC5/8. Proposition 27 and Lemma 25 suggest a 
simple way for computing �c , the unique prime subnetwork of �. By Proposition 27, a constraint (vi Ri j v j) in � is redundant 
iff the corresponding constraint (vi Si j v j) in �p is redundant. Furthermore, Lemma 25 shows that (vi Si j v j) is redundant in 
�p iff Sij is the intersection of all Sik � Skj (k �= i, j). We have a cubic time algorithm (Algorithm 1) for computing �c . For 
each constraint (vi Si j v j), to verify if Sij = ⋂{Sik � Skj : k �= i, j}, we introduce a temporary relation Q ij , which is initially 
assigned as the universal relation. It is possible that, after just a few intersections of Sik � Skj with Q ij , the resulting Q ij is 
already equal to Sij , which implies (vi Si j v j) is redundant in �p and hence (vi Ri j v j) is redundant in �. The core of � is 
then obtained by removing these redundant relations one by one from �.

5. Empirical evaluation

In this section, we empirically evaluate our method in comparison with the methods in [52]. In [52], Wallgrün proposes 
two greedy algorithms for removing redundant constraints in the constraint network: the basic and extended simplification 
algorithms (hereafter Simple and SimpleExt). The Simple algorithm loops through all triples of regions i, j, and k and 
identifies as redundant any constraints Rik such that Rij � R jk ⊆ Rik . A drawback of the Simple algorithm is that redundant 
relations removed may affect subsequent iterations of the algorithm. Hence, the order in which triples are visited by the 
Simple algorithm can alter the resulting subnetwork. The SimpleExt solves this issue by first marking potentially redundant 
relations for removal, subject to a consistency check, before removing all marked relations in a final loop. The Simple 
and SimpleExt algorithms are not guaranteed to provide an optimal solution. Thus, the prime subnetwork is necessarily 
a (possibly improper) subnetwork of that generated by the SimpleExt algorithm, which is in turn a (possibly improper) 
subnetwork of that generated by the Simple algorithm.

Fig. 10 shows an example with just five regions, highlighting the constraints identified as redundant in the prime sub-
network and by the Simple and SimpleExt algorithms. Assuming the Simple algorithm visits regions in numerical order, the 
relations between variables v2 and v5 and between v3 and v4 will be identified as redundant. Additionally, the SimpleExt 
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Table 3
Table showing the proportion of RCC8 constraints for the two data sets and across the six region subsets.

# Regions # Relations DC EC PO NTPP(I) TPP(I)

Footprint 108 5778 1.1% 0.0% 85.6% 13.3% <0.1%
217 23,436 66.9% 0.0% 22.8% 10.3% <0.1%
433 93,528 26.1% 0.0% 56.7% 17.1% <0.1%
862 371,091 62.6% 0.0% 30.5% 6.9% <0.1%

1725 1,486,950 78.1% 0.0% 15.2% 6.7% <0.1%
3443 5,925,403 92.5% 0.0% 4.8% 2.7% <0.1%

Statistical areas 49 1176 69.6% 20.0% 0.0% 2.0% 8.4%
98 4753 87.5% 7.0% 0.0% 1.9% 3.6%

193 18,528 92.9% 4.3% 0.0% 0.4% 2.4%
374 69,751 96.7% 1.8% 0.0% 0.7% 0.8%
658 216,153 98.0% 1.1% 0.0% 0.4% 0.4%

1559 1,214,461 99.2% 0.5% 0.0% 0.2% 0.2%

algorithm is able to identify the relation between v4 and v5 as redundant. However, the redundant relation between v1
and v3 is identified only in the prime subnetwork.

5.1. Data sets

In the following evaluation, two real data sets were used: the UK geographic “footprint” dataset introduced in Section 1.1
(total 3443 regions) and the statistical areas levels 1–4 dataset for Tasmania (in total 1559 regions), provided by the Aus-
tralian Bureau of Statistics. Both datasets are complete basic constraint networks, i.e., there is a single basic relation between 
each pair of regions. Derived from social media, the footprint data set contains a variety of regions of differing sizes and 
shapes, but relatively unstructured sharing almost no adjacent boundaries. In stark contrast the Tasmanian statistical areas 
are highly structured, made up of four levels of spatially contiguous and nested but non-overlapping regions. To aid in our 
analysis, five subsets of each of the two datasets were generated in addition to the full datasets. The subsets were generated 
from selecting those regions that intersect an arbitrarily selected spatial region of increasing size. In this way, subsets of 
data of varying sizes were generated, with 108, 217, 433, 862 and 1725 regions in subsets of the footprint data set, and 49, 
98, 193, 374 and 658 regions from the statistical areas set.

Subsets of spatially related regions were explicitly used, as opposed to selecting regions entirely at random. Specifically, 
at least one region in the subset was required to have non DC relations with all other regions in that subset. This was 
to ensure that the range of RCC8 basic relations in each subset were representative of the RCC8 relations in close spatial 
proximity. The resulting distribution of RCC8 basic relations in the full constraint network for these 10 region subsets along 
with their complete dataset is shown in Table 3. By design, the relations exhibit systematic variations in the distribution of 
relations, for example with the statistical areas data set exhibiting consistently higher levels of DC and lower levels of PO
relations (due to the non-overlapping nature of statistical areas); and smaller subsets exhibiting lower levels of DC relations 
(as a result of the smaller spatial area in which regions must fit for the smaller subsets of data).

5.2. Redundant constraints

In [52], the two conjectures are made that: a. the Simple and SimpleExt are good approximations for removing all 
redundant relations; and b. that the Simple algorithm is in practice almost as good as the SimpleExt algorithm at removing 
redundant relations. In this section, we compare the three types of subnetwork (prime, SimpleExt, and Simple) in practice 
and in the context of these conjectures. Fig. 11 shows the growth in size of the three types of subnetworks across the six 
subsets of each of the two data sets. Several features are worth noting in Fig. 11:

• All three subnetworks grow in size (i.e., the number of constraints comprising a subnetwork) approximately linearly 
with the number of regions (coefficient of determination R2 > 0.97 in all cases, indicating a high level of fit between 
the data and the linear regression). Linear O (n) growth is a lower bound on the space complexity of these subnetworks, 
since they must remain connected (and so must have at least n −1 edges). Thus, this result indicates all three algorithms 
are approaching optimal scalability in terms of space complexity. The only exception occurs with the Simple subnetwork 
and in the case of the statistical areas data set, which grows in size quadratically with the number of regions.

• The prime subnetwork is consistently smaller than the subnetwork generated by the Simple algorithm at all network 
sizes and is significantly smaller for larger networks.

• The SimpleExt subnetwork is significantly larger than the prime subnetwork and of similar size to the Simple subnet-
work in the case of the footprint data set, while it is of similar size to the prime subnetwork and significantly smaller 
than the Simple subnetwork in the case of the statistical areas data set.

In summary, neither the Simple nor SimpleExt algorithm can be relied upon to identify as many redundant constraints 
as the prime subnetwork, although the SimpleExt algorithm may in some cases identify many more redundant constraints 
than the Simple algorithm (such as the statistical areas data set).
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Fig. 11. Size of subnetworks (prime, SimpleExt, and Simple) against the number of regions across subsets of a. footprint and b. statistical areas data set. The 
x-axis is in logarithmic scale.

Fig. 12. Scatterplot of the proportion of partially overlapping relations in the full footprint constraint network, against the proportion of redundant relations 
identified by the prime, SimpleExt, and Simple algorithms.

Further examination reveals that one feature that explains many of the observed differences in results is the differing 
proportions of PO relations in the data sets (see Table 3). Larger proportions of PO relations are strongly related to fewer 
redundant relations being identified across all types of subnetwork, since PO relations typically provide limited reasoning 
power. Fig. 12 demonstrates this relationship empirically for the footprint data set. However, the prime subnetwork is 
consistently better at identifying many more redundant relations than the Simple or SimpleExt algorithms when the full 
constraint network contains many PO relations.

5.3. Scalability

As already discussed, Algorithm 1 can compute the prime subnetwork in O (n3) time for any consistent network over 
a tractable subclass of RCC5/8, where the constraints are taken from a distributive subalgebra. Similarly, the Simple and 
SimpleExt algorithms must in the worst case visit all triples of regions, leading to overall O (n3) scalability.

On average, however, all the algorithms exhibited an average scalability in proportion to n2 (where n is the number of 
regions). Fig. 13 shows the number of constraints checked by each algorithm, the key determining factor in computation 
time. All the algorithms increased linearly with the number of constraints (i.e., in proportion to n2), again with the exception 
of the Simple algorithm operating on the statistical areas data set. Indeed, on average Algorithm 1 scaled slightly more 
efficiently with regard to the number of constraints processed than the other two algorithms. These differences arise because 
on average those algorithms that are better at identifying redundant constraints are more quickly able to discard those 
constraints and move on to checking other constraints.

5.4. Removing disconnected constraints

Overall, the prime subnetwork substantially reduced the number of constraints that would need to be stored to be linear 
in the number of regions (cf. Section 1.1). Table 4 shows the proportion of constraints identified as redundant achieved by 
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Fig. 13. Scalability of prime, SimpleExt, and Simple algorithms, in terms of number of constraints checked across subsets of a. footprint and b. statistical 
areas data set. Both axes are in logarithmic scale.

Table 4
Proportion of constraints identified as redundant by the prime, Simple, and Sim-
pleExt algorithms for the full footprint and statistical areas data sets.

Footprint Statistical areas

Prime 94.58% 98.44%
SimpleExt 90.72% 98.25%
Simple 90.57% 92.61%

Fig. 14. Scatterplot of proportion of constraints in the prime network versus proportion of constraints omitting DC relations with respect to the full 
constraint network.

the different algorithms in the case of the full data sets, up to 98.44% in the case of the prime subnetwork on the highly 
structured statistical areas data set.6

However, in some cases it might potentially be possible to achieve similarly high levels of storage efficiency more simply 
by, say, omitting the most numerous relations (typically DC) from the constraint network. Fig. 14 shows a scatterplot of 
the number of constraints in the constraint network omitting DC relations, against the number of constraints in the prime 
network, both expressed as a percentage of the total number of constraints in the full constraint networks (for each of the 
12 data subsets).

The figure shows that in some cases simply storing the constraint network without DC relations can lead to slightly 
more constraints omitted (those above the diagonal in Fig. 14). In particular, in the statistical areas data set, where the 
vast majority of relations are DC, the number of DC relations can exceed the number of redundant relations identified 
by the prime subnetwork. However, in most cases for the less structured footprint data set, the prime subnetwork contains 
substantially fewer constraints than could be achieved by simply omitting DC relations (those below the diagonal in Fig. 14). 
Besides, while simply dropping the DC relation is competitive space-saver in some cases, it is undesirable when for example 
the information is incomplete and/or we cannot tell if the relation between two objects is (i) DC and dropped or (ii) missing 
or (iii) removed due to redundancy.

6 From Table 4, it can be computed that the size of the Simple subnetwork is 4.737 (1.740, resp.) times of the size of the prime subnetwork in the full 
statistical areas data set (the full footprint data set, resp.).
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Fig. 15. Scalability of reconstituting full constraint network using a-closure, efficient geometric computation in a spatial database, and our hybrid algorithm 
for the footprint and statistical areas data sets. Both axes are in logarithmic scale.

5.5. Reconstituting the full network

As already highlighted in Section 1.1, there are many potential uses for the purely qualitative prime network, without 
involving geometry, including facilitating the comparison and uncovering the essential structure of different constraint net-
works. However, one final question we address empirically is the efficiency of reconstructing the full constraint network 
from the prime subnetwork, when compared with doing so geometrically if the geometric information is complete and 
available.

The full constraint network can be reconstructed from the prime subnetwork in O (n3) time by computing the a-closure 
of the prime subnetwork. Computing the constraint network directly from the geometry requires in the worst case O (n2)

iterations of an O (m2) algorithm for computing the intersection between two polygons (where m is the number of vertices 
in the polygon). In cases where m ≈ n this can lead to a worst case complexity of the geometric algorithm of O (n4). We 
note that, in our statistical areas data set, the largest polygon contains more than 248,000 vertices, and so m is indeed 
comparable to n.

However, in practice, by making use of the spatial structure of the data through algorithms (e.g., by checking for non-
overlapping minimum bounding boxes for polygons before computing the polygon intersection) and spatial indexes, the 
geometric algorithm is expected to be on average significantly more efficient. Fig. 15 compares the scalability of the two 
approaches, a-closure and efficient geometric computation in an indexed spatial database. At least for the smaller data sets 
tested, computing the a-closure is significantly more efficient. For example, in the case of the smallest statistical areas data 
subset, computing the a-closure requires less than 1000th of the time of the geometric computation. However, the figure 
shows that using the spatial database is significantly more scalable (average-case O (n) time complexity) when compared 
with the a-closure (average case approaching O (n3) complexity).

Fig. 15 also shows the results of a hybrid reconstitution algorithm, that uses both the geometry and the a-closure. The 
hybrid algorithm first adds any DC relations to the prime network that can be inferred simply through comparison of the 
minimum bounding box of the polygon geometry (since non-intersecting minimum bounding boxes for two polygons imply 
a DC relations). Then the a-closure is computed with this partially reconstituted subnetwork. The results show a significant 
improvement in scalability using this approach, reducing the average case time complexity to below O (n2) in the case of 
the footprint dataset. Ongoing work is currently investigating further mechanisms for combining both these geometric and 
the qualitative aspects of regions in efficient database storage and queries.

5.6. Summary

In summary, our analysis of the performance of the three subnetworks on practical geographic data sets containing 
thousands of regions demonstrates:

1. The prime subnetwork consistently outperforms the Simple and SimpleExt algorithms in terms of the number of re-
dundant relations identified, in particular in cases where the proportion of PO relations in the full constraint network 
is higher.

2. The average case scalability for computing the prime subnetwork required n2 operations, where n is the number of 
regions. Because the prime subnetwork identified more redundant relations, it performs on average fewer constraint 
checks than the Simple and SimpleExt algorithms, and was in our tests always more scalable.

3. For less structured datasets, the prime subnetwork can substantially improve on the number of constraints identified as 
redundant, when compared with the naive solution of omitting DC relations from the full constraint network.
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Table 5
Applicability of the results in this paper to other calculi, where + (−) indicates the corresponding result holds (does not hold) for 
that calculus, +s indicates that for PA it is tractable to decide if a constraint is redundant, and +p indicates that the result holds for 
any tractable subclass of RA over which path-consistency implies consistency.

PA IA CRA RA

Proposition 2 + + + +
Proposition 6 + + + +
Lemma 7 + + + +
Lemma 9 + + + +
Proposition 13 +s + + +
Proposition 14 + + + +p
Proposition 17 + + + +p
Theorem 18 + + + +p
Theorem 19 + + + +p
Lemma 20 + + + +
Lemma 22 + + + +p
Lemma 23 + + + +
Lemma 24 + + + +p
Lemma 25 + + + +p
Lemma 26 + + + +
Proposition 27 + − + −
Proposition 28 + − + −
Theorem 29 + − + −

The data sets used for the experiments are provided in the supplementary material. It is worth noting that our evaluation 
only concerns basic constraint networks derived from real data sets. This setting follows [52] (though Wallgrün uses, instead, 
randomly generated geometric data sets) and suits well for the purpose of topological adjustment of spatial data. It will be 
very interesting to compare the three methods by using general constraint networks over a distributive subalgebra. But, 
currently, we still lack practical methods for generating large constraint networks from real-world applications.

6. Conclusion

In this paper, we have systematically investigated the computational complexity of redundancy checking for RCC5/8 con-
straints. Although it is in general intractable, we have shown that a prime subnetwork can be found in O (n5) time for 
any consistent network over a tractable subclass of RCC5/8. If the constraints are taken from a distributive subalgebra, we 
proved that the constraint network has a unique prime subnetwork, which can be found in cubic time. As a by-product, 
we also proved that any path-consistent network over a distributive subalgebra is weakly globally consistent and mini-
mal.

Our empirical analysis showed that for real geographic data sets the prime subnetwork can lead to significant increases 
in the number of redundant relations identified when compared with the approximations proposed by [52]. In practice, the 
algorithm was efficient, exhibiting average case O (n2) scalability. The redundant relations identified by the prime subnet-
work can also significantly outnumber DC relations, especially in less structured geographic data sets that may contain a 
significant minority of PO relations.

It is worth noting that a large part of our results can be applied to several other qualitative calculi (like PA, IA, CRA, 
and RA) immediately, but Propositions 27 and 28 and Theorem 29 do use the particular algebraic properties of RCC5/8 
(see Table 5 for a summary). For example, Theorem 29 cannot be applied to IA, because we have an all-different and 
path-consistent basic IA network which is not equivalent to its core. Future work will consider how to extend our results to 
IA, RA and other calculi.

We are also developing further the practical applications of prime subnetworks. In addition to pursuing a more sys-
tematic exploration of the applications to saving storage than the one given in Section 1.1, further work is necessary to 
investigate other aspects of prime subnetworks, in particular the structure and comparison of different prime subnetworks 
of sets of footprints. Another challenging research direction is to develop more efficient reasoning methods for sparse con-
straint networks other than enforcing path-consistency, which runs in cubic time and always turns a sparse constraint 
network into a complete one. The method initiated in [47] seems very promising.
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Fig. 16. Illustration of the three types of paths: (a) Case 1, (b) Case 2, (c) Case 3, where solid lines represent constraints or paths contained in π and the 
dashed line represents the constraint (xR y) in �.

Appendix A. Proof of Lemmas 20 and 22 and Proposition 27

Proof of Lemma 20. Suppose the network becomes stable in k steps when enforcing PCA. For l ≤ k, we write Rl
i j for the 

constraint between vi and v j in the l-th step. We prove by using induction on l that every Rl
i j is the intersection of the 

weak compositions of several paths from vi to v j in �.
When l = 0, this is clearly true. Suppose this is true for l ≤ s. We show it also holds for l = s + 1. Suppose in this step 

the following updating rule is called

Rl+1
i j = (Rl

ik � Rl
kj) ∩ Rl

i j .

By induction hypothesis, we know Rl
i j is the intersection of the weak compositions of several paths from vi to v j in �. 

Similar for Rl
ik and Rl

kj . Note that when joining a path from vi to vk and a path from vk to v j , we obtain a path from vi

to v j . Because every constraint in � is taken from S , in which weak composition distributes over nonempty intersections, 
it follows that Rl

ik � Rl
kj is identical to the intersection of the weak compositions of all these paths from vi to v j via vk . It 

is now clear that Rl+1
i j also satisfies the property.

So far, we have shown for every constraint (xS y) in �p that S is the intersection of the weak compositions of several
paths from x to y in �. Because �p is path-consistent, the weak composition of every path from x to y in �p contains S . 
Therefore, S is also contained in the intersection of the weak compositions of all paths from x to y in �. This shows that S
is exactly the intersection of the weak compositions of all paths from x to y in �. �
Proof of Lemma 22. Because (xR y) is the only path with length 1 from x to y in �, Lemma 20 in fact asserts that S is 
the intersection of R and the weak compositions of all paths in � with length ≥ 2. Note that each path from x to y in 
� \ {(xR y)} has length ≥ 2. We know S ⊆ R ∩ W .

To show S ⊇ R ∩ W , we only need to show CT(π) ⊇ R ∩ W for every path from x to y in � with length ≥ 2. Suppose 
π = (c1, c2, . . . , cs) (s ≥ 2) is such a path and ci = (ui−1 Riui), u0 = x, us = y.

There are three types of paths (see Fig. 16 for illustration).
Case 1. π contains neither (xR y) nor (yR−1x). Clearly π is a path from x to y in � \ {(xR y)}. By definition we have 

CT(π) ⊇ W .
Case 2. If ci = (xR y) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) � R � CT(π>i). Note that either π<i or π>i is a nonempty 

cycle. By Lemma 21 we know the weak composition of each cycle contains EQ. Therefore, we know CT(π) ⊇ R .
Case 3. If ci = (yR−1x) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) � CT(π≥i). Without loss of generality, we assume ci is 

the first constraint in π such that ci = (yR−1x). It is clear that π<i is a path of Case 1 and hence W ⊆ CT(π<i). Note that 
π≥i is a path from y to itself. By Lemma 21 we know EQ ∈ CT(π≥i) hence CT(π) = CT(π<i) � CT(π≥i) ⊇ W � EQ = W .

This shows that R ∩ W is contained in the weak composition of every path from x to y in � with length ≥ 2. Since 
S is the intersection of R and all paths from x to y in � with length ≥ 2, this shows that S ⊇ R ∩ W . Therefore we have 
S = R ∩ W . �
Proof of Proposition 27. The necessity part has been proved in Lemma 26. We only need to show the sufficiency part. Write 
�′ and �′′ for � \ {(xR y)} and �p \ {(xS y)} respectively. Suppose (xS y) is redundant in �p . Let W be the intersection of the 
weak compositions of all paths from x to y in � \ {(xR y)}. To show that (xR y) is redundant in �, by Lemma 23, we only 
need to show R ⊇ W .

Recall S = R ∩ W by Lemma 22. To show R ⊆ W , we first show

R ∩ W ⊇ W ∩ Ol � R ∩ R � Ol, (A.1)

where Ol is either O5 or O8 (cf. Lemma 21 for definition), according to whether � is over RCC5 or RCC8.
Because (xS y) is redundant in �p , by Lemma 25, we know S is the intersection of the weak compositions of all paths 

with length 2 from x to y in �p . For each constraint (ui Si ju j) in any such a path, Lemma 20 shows that Sij is the inter-
section of the weak compositions of all paths from ui to u j in �. Replace each (ui Si ju j) with several paths such that Sij
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is the intersection of their weak compositions. We get several paths from x to y in � with length ≥ 2 such that S is the 
intersection of the weak compositions of these paths. By Lemma 20 again we know S is contained in the weak composition 
of every path from x to y in �. This shows that S is exactly the intersection of the weak compositions of all paths from x
to y in � with length ≥ 2.7

As we have seen in the proof of Lemma 22, there are three types of paths. For every path π of Case 1 or 3 (defined 
in Lemma 22), we know CT(π) contains W . Suppose π is a path of Case 2 and ci = (xR y) for some 1 ≤ i ≤ s. Then 
CT(π) = CT(π<i) � R �CT(π>i). Note that if π<i (π>i , respectively) is nonempty, then CT(π<i) (CT(π>i), respectively) contains 
Ol by Lemma 21. Either π<i or π>i is a cycle. Therefore, CT(π) contains Ol � R ∩ R � Ol ∩ Ol � R � Ol . In summary, for each 
path π from x to y in � with length ≥ 2, we have CT(π) ⊇ W ∩ Ol � R ∩ R � Ol ∩ Ol � R � Ol . Because Ol � R � Ol is always the 
universal relation (as PO � R � PO = PO � PO = �l by Lemma 1), we know S , as the intersection of the weak compositions of 
all paths from x to y in � with length ≥ 2, contains W ∩ Ol � R ∩ R � Ol . Since S = R ∩ W , we have (A.1) immediately.

We next show R ⊇ W . Because � is consistent and satisfies (6), we know S = R ∩ W is neither empty nor {EQ}, i.e.,

∅ �= R ∩ W �= {EQ}.
If PO ∈ R , then Ol � R ∩ R � Ol ⊇ PO � PO is the universal relation. That R ⊇ W follows directly from R ∩ W ⊇ W ∩ �l = W .
If PO /∈ R , then PO /∈ W because PO ∈ Ol � R ∩ R � Ol and (A.1) holds. We show R ⊇ W . We only consider RCC8 relations. 

The case for RCC5 relations is similar. Suppose R is a relation in a distributive subalgebra of RCC8 such that PO /∈ R and 
R �= EQ. Checking the lists of relations in the two maximal distributive subalgebras given in Appendix B, R is either a basic 
relation other than PO and EQ, or one of the following relations

{TPP,NTPP}, {TPP−1,NTPP−1},
{DC,EC}, {TPP,EQ}, {TPP−1,EQ},
{TPP,NTPP,EQ}, {TPP−1,NTPP−1,EQ}. (A.2)

There are several subcases. Suppose R is a basic relation α other than PO and EQ. We write αd for the other basic 
relation such that {α, αd} is a relation in (A.2). For example, DCd = EC, TPPd = NTPP, and TPP−1d = NTPP−1. From the RCC8 
composition table we can see

{α,αd,PO} ⊆ PO � α ∩ α � PO ⊆ O8 � α ∩ α � O8

holds for every basic relation α other than PO and EQ. We assert that αd /∈ W if R = {α}. This is because, otherwise, we 
have αd ∈ W ∩ O8 � R ∩ R � O8 and hence by (A.1) αd ∈ R ∩ W ⊆ R . A contradiction. In particular, if α is DC, EC, NTPP, or 
NTPP−1, then W = R . If α is either TPP or TPP−1, then we can further show EQ ∈ O8 � α ∩ α � O8 and hence EQ /∈ W . This 
implies W = R .

Suppose R is {DC, EC}, {TPP, NTPP, EQ}, or {TPP−1, NTPP−1, EQ}. Note that PO /∈ W , and ∅ �= R ∩ W �= {EQ}. This shows 
that W is contained in R .

Suppose R is {TPP, NTPP} or {TPP−1, NTPP−1}. By (A.1) and EQ ∈ O8 � R ∩ R � O8, W does not contain EQ. Hence W is 
contained in R .

Suppose R is {TPP, EQ}. By (A.1) and NTPP ∈ O8 � R ∩ R � O8, W cannot contain NTPP. This implies that W is contained 
in R . The case for R = {TPP−1, EQ} is similar.

In summary, we have R ⊇ W in all cases. In other words, R can be obtained as the intersection of all paths from x to y
in � \ {(xR y)}. Hence (xR y) is redundant in � by Lemma 23. �
Appendix B. Maximal distributive subalgebras of RCC5/8

A distributive subalgebra S is maximal if there is no other distributive subalgebra that properly contains S . To compute 
the maximal distributive subalgebras, we first compute B̂l , the closure of Bl in RCCl under converse, weak composition, and 
intersection, and then check by a program if B̂l ∪ Z satisfies distributivity for some subset Z of RCCl.

Write Dl for the set of RCCl relations α such that B̂l ∪ {α} satisfies distributivity. For every pair of relations α, β in Dl , 
we check if B̂l ∪ {α, β} satisfies distributivity and say α has d-relation to β if this is the case. Our result shows that there 
are precisely two disjoint subsets Xl and Yl (which form a partition of Dl) such that each relation α in Xl (Yl , respectively) 
has d-relation to every other relation in Xl (Yl , respectively), but has no d-relation to any relation in Yl (Xl , respectively). 
Moreover, B̂l ∪ Xl and B̂l ∪ Yl are both distributive subalgebras of RCCl. Clearly, these are the only maximal distributive 
subalgebras of RCCl.

For RCC5, the closure of basic relations B̂5 contains 12 nonempty relations. These are the five basic relations, and the 
following 7 relations (cf. Section 2.4).

7 While we can further show that S is the intersection of the weak compositions of all paths from x to y in � that have no cycles and have length ≥ 2, 
it is not guaranteed that such a path is in � \ {(xR y)}. That is, we cannot directly show S = W .
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{PO,PP}, {PO,PP−1}, {PO,PP,PP−1,EQ},
{DR,PO,PP}, {DR,PO,PP−1}, {DR,PO}, �5.

The first maximal distributive subalgebra, denoted by D5
14, contains (except relations in B̂5)

{PP,EQ}, {PP−1,EQ}.
The second maximal distributive subalgebra, denoted by D5

20, contains in addition the following eight relations

{PO,EQ}, {PO,PP,EQ}, {PO,PP,PP−1}, {PO,PP−1,EQ},
{DR,PO,PP,PP−1}, {DR,PO,PP−1,EQ},
{DR,PO,EQ}, {DR,PO,PP,EQ}.

It is easy to see that both D5
14 and D5

20 are contained in H5, the maximal tractable subclass of RCC5 identified in [43,27].
For RCC8, the closure of basic relations contains 37 nonempty relations. These are the eight basic relations and the 

following 29 relations

{PO,TPP}, {PO,TPP−1}, {PO,TPP,NTPP},
{PO,TPP−1,NTPP−1}, {PO,TPP,TPP−1,EQ},
{PO,TPP,NTPP,TPP−1,EQ},
{PO,TPP,TPP−1,NTPP−1,EQ},
{PO,TPP,NTPP,TPP−1,NTPP−1,EQ},
{TPP,NTPP}, {TPP−1,NTPP−1},
{EC,PO}, {EC,PO,TPP}, {EC,PO,TPP−1},
{EC,PO,TPP,NTPP},
{EC,PO,TPP−1,NTPP−1},
{EC,PO,TPP,TPP−1,EQ},
{EC,PO,TPP,NTPP,TPP−1,EQ},
{EC,PO,TPP,TPP−1,NTPP−1,EQ},
{EC,PO,TPP,NTPP,TPP−1,NTPP−1,EQ},
{DC,EC}, {DC,EC,PO}, {DC,EC,PO,TPP},
{DC,EC,PO,TPP−1},
{DC,EC,PO,TPP,NTPP},
{DC,EC,PO,TPP−1,NTPP−1},
{DC,EC,PO,TPP,TPP−1,EQ},
{DC,EC,PO,TPP,NTPP,TPP−1,EQ},
{DC,EC,PO,TPP,TPP−1,NTPP−1,EQ}, �8,

where �8 is the universal relation consisting of all RCC8 basic relations.
The first maximal distributive subalgebra, denoted by D8

41, contains in addition the following four relations

{TPP,EQ}, {TPP,NTPP,EQ},
{TPP−1,EQ}, {TPP−1,NTPP−1,EQ}.

This distributive subalgebra turns out to be exactly the class of convex RCC8 relations identified in [8]. The second maximal 
distributive subalgebra, denoted by D8

64, contains in addition the following 27 relations

{PO,EQ}, {PO,TPP,EQ},
{PO,TPP−1,EQ}, {PO,TPP,TPP−1},
{PO,TPP,NTPP,EQ},
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{PO,TPP−1,NTPP−1,EQ},
{PO,TPP,TPP−1,NTPP−1},
{PO,TPP,NTPP,TPP−1},
{PO,TPP,NTPP,TPP−1,NTPP−1},
{EC,PO,EQ}, {EC,PO,TPP,EQ},
{EC,PO,TPP−1,EQ},
{EC,PO,TPP−1,NTPP−1,EQ},
{EC,PO,TPP,NTPP,EQ},
{EC,PO,TPP,TPP−1},
{EC,PO,TPP,TPP−1,NTPP−1},
{EC,PO,TPP,NTPP,TPP−1},
{EC,PO,TPP,NTPP,TPP−1,NTPP−1},
{DC,EC,PO,EQ}, {DC,EC,PO,TPP,EQ},
{DC,EC,PO,TPP−1,EQ},
{DC,EC,PO,TPP,TPP−1},
{DC,EC,PO,TPP−1,NTPP−1,EQ},
{DC,EC,PO,TPP,NTPP,EQ},
{DC,EC,PO,TPP,NTPP,TPP−1},
{DC,EC,PO,TPP,TPP−1,NTPP−1},
{DC,EC,PO,TPP,NTPP,TPP−1,NTPP−1}.

It is easy to check that both D8
41 and D8

64 are contained in Ĥ8, one of the three maximal subclasses of RCC8 identified 
in [42].

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.artint.2015.03.010.
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