
Modelling the impact of road infrastructure on cycling moving speed

Afshin Jafari a,*, Dhirendra Singh b,c, Lucy Gunn a, Alan Both d, Billie Giles-Corti a,e

a Centre for Urban Research, RMIT University, Melbourne, Australia
b School of Computing Technologies, RMIT University, Melbourne, Australia
c Data61, CSIRO, Melbourne, Australia
d School of Geospatial science, RMIT University, Melbourne, Australia
e The University of Western Australia, Crawley, Western Australia

A R T I C L E  I N F O

Keywords:
Cycling infrastructure optimization
Micromobility solutions
Agent-based simulation
Bicycle speed
Traffic signals

A B S T R A C T

Cycling for transport is a sustainable alternative to using motorised vehicles for daily trips and is a key form of 
micromobility. Travel time is a critical factor influencing cycling route choice behaviour and uptake. Thus, it is 
important to understand the factors affecting cycling travel time and speed and their impact on cycling 
behaviour. In this study, an agent-based transport simulation model with heterogeneous cycling speeds was 
developed and used for Melbourne to study the impact of a hypothetical traffic signal optimisation intervention 
along six key cycling corridors. Linear regression and random forest models were used to identify factors 
affecting cycling speed, which informed the parameters of the agent-based model. Simulation outputs showed, on 
average, an increase of 4.1 % in the number of cyclists on the corridors, as existing cyclists chose to use these 
corridors, and an average reduction in cyclists’ moving travel time of 6.2 % for those using the intervention 
corridors (excluding time spent waiting at traffic signals). The findings provide insights into the effects of road 
attributes on cycling speed and behaviour, as well as the effectiveness of interventions aimed at reducing cycling 
delays. These insights are valuable for developing solutions to optimise urban infrastructure for micromobility, 
enhancing the efficiency and appeal of cycling as a viable transport option.

1. Introduction

Cycling for transport, that is, cycling to a destination rather than for 
recreation, is widely recognised as a key solution to a healthier and more 
sustainable future (Celis-Morales et al., 2017; Handy et al., 2014). 
Cycling not only provides an active and sustainable mode of transport 
(Buehler et al., 2020), it is often faster than other modes for short local 
trips or around Central Business District (CBD) areas or for peak hour 
commute (Gossling, 2020) offering a competitive alternative to the car 
for most trips within a cycling distance (Ellison and Greaves, 2011). 
However, cycling remains one of the least used mode of transport in 
many cities, particularly those in Australia (Jafari et al., 2024a).

There has been an increasing interest in understanding cyclist 
behaviour and barriers to cycling as a means of encouraging cycling 
uptake (Molenberg et al., 2019; 2023). Built-environment factors, 
particularly safe cycling infrastructure is found to be key barriers for 
cycling uptake globally, particularly among the demographic groups 
that are interested to take up cycling and their daily trips can be 
switched to cycling, for example are within a bikeable distance and or 

does not require carrying luggage or items, but are not confident to cycle 
on high stress and unsafe roads.

Another key built-environment element that significantly impacts 
cycling uptake is intersections. Poorly designed intersections negatively 
affect cycling in at least two ways. First, they are high-risk and unsafe 
crossing points, which significantly compromise the overall safety of a 
cycling journey. Second, they cause delays for cyclists by increasing 
travel time due to stops and slowdowns at intersections.

Increased travel time is a key factor influencing cycling mode choice 
and route choice. Borjesson and Eliasson (2012) found that in Stock-
holm, the value of time on a bicycle—that is, the opportunity cost of 
time spent travelling on a bicycle—on a street without a bike lane is 
almost twice that of the time spent on alternative routes with bike lanes. 
Similarly, in their mode choice model for the UK, Wardman et al. (2007)
found that time spent cycling was valued three times higher than the 
travel time for other modes.

Attempts to reduce cycling travel time typically focus on reducing 
travel distances for cyclists, either through improving cycling street 
connectivity and land use change interventions to improve accessibility 
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to destinations (Handy et al., 2014; Ahmad et al., 2020), or by reducing 
the effect of factors that decrease cycling speed that cause delays 
throughout the route and journey. There are numerous factors associ-
ated with cycling speed, which can be divided into: (i) individual-level 
factors such as physical ability, trip purpose, clothing, and type of bi-
cycle (Romanillos and Gutierrez, 2020); (ii) social factors such as peer 
pressure to cycle faster and bicycle congestion (Paulsen and Nagel, 
2019); and (iii) environmental factors such as road attributes including 
slope, traffic signals and intersections, connectivity, and bikeway type 
(Flugel et al., 2019; Clarry et al., 2019; Boufous et al., 2018; Ellison and 
Greaves, 2011).

One type of intervention that has gained interest among transport 
planners in recent years is to optimise traffic signals along the main 
cycling corridors to minimise disruption for cyclists, creating a green 
wave of traffic signals for cyclists to bypass intersections. The green 
wave signal timing for cycling was first introduced in Copenhagen, 
Denmark, which led to a 17 % travel time reduction for those who cycled 
at the typical cycling free flow speed of 20 kilometres per hour (km/h) 
(City of Copenhagen, 2014). Since then, green wave signal timing in-
terventions for cyclists have been implemented in several other cycling 
corridors in Copenhagen, as well as other cities such as Groningen, The 
Netherlands (Zhang and Blokpoel, 2018), and in trials in Melbourne,1

Australia (Bicycle Network, 2019).
Although trial data provides valuable information on the real-world 

implications of such interventions, a limitation of these trials is that they 
are often small-scale, typically involving only a few signals, and they 
lack the ability to compare a number of different alternatives and to 
identify corridors that could provide maximum gain. City-scale agent- 
based transport simulation models provide a promising solution to 
simulate different possible interventions and their potential impact on 
cyclists and other road users. In recent years, these types of models have 
become important tools for researchers and planners to examine cycling 
travel behaviours (Kaziyeva et al., 2021; Jafari et al., 2024a). A common 
practice in such models has been to assume a constant mode-specific 
speed of around 15 km/h for cycling (Balac and Horl, 2021), or using 
queue-based traffic modelling to incorporate bicycle traffic congestion 
(Paulsen and Nagel, 2019). However, few studies have developed and 
employed city-scale transport models with heterogeneous cycling speed, 
and even fewer have included the impact of road attributes such as 
traffic signals on cycling.

This study aimed to address this gap by investigating the association 
between road characteristics and cycling speed in Melbourne. The 
findings were used to inform a city-scale agent-based cycling simulation 
model to generate more accurate cycling travel speeds. The simulation 
model was then used to test and understand the potential improvements 
in cycling travel speed that could be achieved through a series of green 
wave-like interventions on the main cycling corridors that feed into the 
Melbourne CBD.

2. Methodology

Fig. 1 provides an overview of the study methods and steps. The first 
step was creating a road network model for the bicycle infrastructure in 
Melbourne that included attributes related to the type of cycling infra-
structure, slope, and junction. Next, two regression models were 
developed to estimate the speed of cycling using smartphone application 
data: a least squares Linear Regression (LR) model and a Random Forest 
(RF) regression model.

LR and RF models were chosen as each can provide unique insights 
and information on the association between road attributes and cycling 

speed. The LR model offers a simple and easy-to-understand approach to 
understanding the association between road attributes and cycling 
speed. However, it assumes linearity in the parameters, which limits its 
predictive accuracy. The RF model does not assume a linear relationship 
between the predictors and the outcome variables and therefore typi-
cally offers better predictive accuracy, however, it is often referred to as 
a black-box model (Palczewska et al., 2013), which offers little insight 
into the relationship between variables.

The model with the least prediction error was then used to predict 
cycling speed for all bicycle accessible roads in Melbourne, which was 
used to extend an existing agent-based cycling simulation model to 
consider heterogenous cycling speed during the simulation. We then 
used this model to predict the impact of improving traffic signals to 
facilitate cycling speed for the main cycling corridors that feed into 
Melbourne’s CBD. Each of these steps are described in more detail in the 
remaining of this section.

2.1. Study area

Melbourne is the capital city of the state of Victoria, Australia, with a 
population of approximately 5 million residents (Australian Bureau of 
Statistics, 2021), and it covers an area of about 10,000 square kilo-
metres. The population is expected to almost double by 2050, reaching 
around 9 million people (Department of Environment, Land, Water and 
Planning, 2017). Accordingly, transport and housing policies seek to 
meet the needs of this growing population by 2050.

The Australian Bureau of Statistics (ABS) reports census data using a 
hierarchy of statistical areas, referred to as Statistical Area Levels. For 
example, Statistical Area Level 2 (SA2) units have populations of around 
10,000 people and typically represent suburbs in urban areas, while 
Statistical Area Level 4 (SA4) units have populations around 300,000 to 
500,000 people and represent larger areas, often reflecting labour 
markets.

Fig. 2 presents a map of Greater Melbourne showing the boundaries 
of SA4 regions, with population density depicted at the SA2 level in 
terms of people per square kilometre based on the 2016 Census data. The 
figure highlights the distribution of population density across Mel-
bourne, illustrating that the highest densities are concentrated in the 
inner parts of the city, particularly around the CBD and surrounding 
suburbs, which are mostly within Melbourne – Inner SA4 marked on the 
map (Fig. 2).

The city is characterised by a monocentric urban structure, with a 
significant proportion of work trips directed towards the CBD located at 
the centre of the Melbourne – inner SA4. This centralisation results in 
high demand for transport infrastructure leading into the CBD, making it 
a critical area for studies on commuting patterns and transport modes.

Cycling in Melbourne remains a mode with a relatively small share, 
accounting for about 1.6 % of all commuter trips, while still being 
higher than the Australian average of about 1 % (Australian Bureau of 
Statistics, 2022). However, cycling is more prevalent in the inner sub-
urbs, where there is better cycling infrastructure, higher population 
densities, and a greater mix of land uses (Boulange et al., 2017). Fig. 3
shows the bicycle mode share for trips to work, based on ABS Census 
2016 data, at the SA2 level based on place of usual residence.

2.2. Generating the attributed cycling infrastructure road network model 
for Melbourne

We used the OpenStreetMap extract of the Melbourne region from 
March 2021 as the main input to create the road network model used in 
this study. The algorithm developed by Jafari et al. (2022) was used to 
map the roads from the OpenStreetMap extract and select those that are 
publicly accessible and can be accessed by bike. This means that roads 
on privately owned lands that are not accessible, or those where cycling 
is not permitted, such as footpaths, motorways, and roads explicitly 
prohibiting cycling, were excluded. Fig. 4 presents the generated road 

1 For simplicity, we will refer to Greater Melbourne simply as Melbourne 
throughout this paper. Please note that this should not be confused with the 
City of Melbourne, which is the central Local Government Area within Greater 
Melbourne.
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network for Melbourne. Furthermore, road feature tags from Open-
StreetMap were processed to identify the cycling-relevant attributes 
needed in this study. One of these attributes was bikeway type. Road 
segments were categorised according to the availability and type of 
bikeway into five categories: (i) mixed: no bicycle-specific infrastruc-
ture; (ii) simple lane: a painted lane on the road without a physical 
barrier; (iii) separated lane: a bicycle lane on the road but separated 
from motorised traffic with a physical barrier; (iv) off-road path: an 
off-road path dedicated to bicycles only; and (v) shared paths which are 
off-road paths shared between bicycles and pedestrians.

To capture the influence of junctions and traffic signals on cycling 
speed, we defined two additional road attributes of junction type and 
signal type based on the OpenStreetMap tags. In this study, we use the 
term junction to refer collectively to both intersections and roundabouts, 
representing any location where two or more roads meet or cross.

The junction type variable had three possible values: (i) within 

intersection, that is, a road segment that is physically located within an 
intersection where two or more roads meet; (ii) within roundabout, that 
is, a road segment that is within a roundabout; and (iii) mid-block, that 
is, a road segment that is not within any intersection or roundabout. The 
junction type variable allows us to assess how different types of junc-
tions affect cycling speed due to factors like navigational complexity, 
turning movements, and interactions with other road users.

The signal type variable indicates whether a road segment is 
approaching a signalised junction, with two possible values: (i) 
approaching a signal, that is, a road segment that is immediately before 
a signalised junction but is not within the junction itself; and (ii) not 
approaching a signal, that is, a road segment that is not immediately 
before a signalised junction. The signal type variable helps capture the 
impact of approaching traffic signals on cycling speed, as cyclists may 
adjust their speed in anticipation of stopping or proceeding through the 
junction.

Fig. 1. Overview of the study steps and its methods and data sets.

Fig. 2. Map of Melbourne showing the boundaries of Statistical Areas Level 4 
(SA4) regions and population density at the SA2 level (people per square kil-
ometre) based on 2016 Census data (base map from OpenStreetMap).

Fig. 3. Map illustrating bicycle mode share for trips to work based on ABS 
Census 2016 Method of Travel to Work data, shown at the SA2 level (base map 
from OpenStreetMap).
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In addition to the above, we also extracted speed limit, number 
motor traffic lanes, and road segment length from OpenStreetMap for 
each of the road segments. Wherever data was not available in Open-
StreetMap for speed limit or number of lanes, we used Australian default 
values based on the hierarchy of the road as indicated by Jafari et al., 
(2022).

We also used other data sets to add additional attributes to the road 
segments that are relevant for cycling. A 10 m LiDAR-derived Digital 
Elevation Model (DEM),2 which provides high-resolution elevation data 
of the Earth’s surface, was used to determine the elevation at the start 
and end points of each road segment. By calculating the difference in 
elevation and dividing it by the length of the road segment, we calcu-
lated the slope (%) for each segment.

To account for differences in cycling patterns between the inner, 
middle, and outer suburbs of Melbourne, we added a variable repre-
senting the distance from the CBD. This was calculated based on each 
road segment’s centroid distance to Melbourne’s General Post Office in 
the CBD. Additionally, we used VicMap planning map data from the 
Victorian Government3 to add land-use type to the areas surrounding 
each road, we referred to it as zone type. Land uses were categorised into 
the following types: activity centres, CBD, commercial, residential, 
mixed-use, industrial, park and recreation, logistic (areas designated for 
ports, transit, and freight), roads (areas surrounding arterial roads or 
higher), and other (for any land uses not classified under the above 
categories).

These variables were calculated for all road segments in Melbourne. 
However, for simplicity and due to the large area of Melbourne, we 
demonstrate these variables in Fig. 5 only for the Melbourne - Inner SA4 
area.

2.3. Training cycling speed estimation models

Aggregated and de-identified data from Strava Metro, hereafter the 
Metro data, for March 2021 was used to capture cycling volume and 
speed for the study area. The data include 253,424 trips tagged as 
commute undertaken by 31,222 cyclists throughout Melbourne. These 

data were filtered to weekday records and road segments that carried a 
minimum of 20 unique cyclists and with an average speed between 
5 km/h and 50 km/h. Finally, road segments with an average speed 
within the two standard deviation ranges of the total average speed, 
covering approximately 95 % of the road segments, were selected to 
build the speed estimation model.

To estimate the cycling speed for all road segments, LR and RF 
regression models were used, with the outcome variable for both models 
being the average weekday cycling speed extracted from Metro data, 
denoted as vweekday, and the physical environment factors shown in Fig. 5
as predictors.

The Metro data was divided into a training set of 28,387 data points 
and a test set of 9464 data points as follows. Stratified sampling based on 
the vweekday variable with a bin size of four was used to convert the 
vweekday variable which is continuous into a categorical variable for the 
purpose of dividing the data into a training set and test set. Therefore, 
random sampling of data points was performed within each stratum, 
ensuring that both training and test sets had approximately similar 
proportions of samples within each vweekday bin compared with the entire 
data set.

For both LR and RF models, the continuous vweekday (the average 
weekday cycling speed extracted from Metro data) was used as the 
outcome variable.

In the LR model, categorical variables were included by coding them 
as binary indicator variables, with one category designated as the 
reference category. This method allows categorical predictors to be 
incorporated into the regression analysis and enables the interpretation 
of their effects on the outcome variable relative to the reference 
category.

The RF model does not require the transformation of categorical 
variables into binary indicators and can handle categorical predictors 
directly. The RF model is an ensemble learning method that builds 
multiple decision trees and aggregates their predictions to improve ac-
curacy and control overfitting (Breiman, 2001). In an RF model, a node 
is a point in a decision tree where the data is split based on a predictor 
variable and a split refers to the decision rule applied at a node to 
partition the data into subsets that are more homogeneous with respect 
to the outcome variable.

The RF model requires tuning of hyperparameters to optimise its 
performance. Specifically, we tuned the following hyperparameters: (i) 
mtry, which is the number of predictor variables randomly selected as 
candidates at each split when growing the trees. This parameter controls 
the diversity of the trees and helps prevent overfitting; and (ii) min _n, 
which is the minimum number of observations required in a node for it 
to be split further. This parameter ensures that nodes have a sufficient 
number of observations before splitting, which can improve the model’s 
generalisability.

We used a grid-based approach with a grid size of 20, which means 
that 20 parameter sets were created and compared to search for the best 
parameter values with Root Mean Squared Error (RMSE) and R-squared 
(R2) as performance metrics. Bootstrap sampling stratified on vwd with 
bin size equal to four and number of bootstrap samples equal to 25 was 
used for training.

We used the tune package in R programming language for hyper- 
parameter tunning and finding the best performing variable values. 
The hyper-parameter tuning result for the random forest model using a 
grid of n=20 is presented in Fig. 6. Among the 20 parameter pairs 
analysed, mtry=3 and min _n=4 had the best performance with 
RMSE=4.41 and R2=0.498. Therefore, these values were used to build 
the final RF regression model.

The number of trees in the forest, n_tree, was another parameter 
required to build the RF model. This number is not a tuning parameter 
and only has to be large enough to give every variable the opportunity to 
be selected (Couronne et al., 2018). Therefore, an n_tree of 1000 was 
selected for the model.

Fig. 4. Road network model of (a) Greater Melbourne, and (b) enlarged map of 
City of Melbourne with CBD area highlighted (base map from OpenStreetMap).

2 https://discover.data.vic.gov.au/dataset/vicmap-elevation-dem-10m
Retrieved May 2021

3 https://www.land.vic.gov.au/maps-and-spatial/spatial-data/vicmap-catalo 
gue/vicmap-planning Retrieved May 2021
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Finally, we use the Permutation-based Variable Importance Measure 
(P-VIM) to understand the relative importance of the input variables of 
the model. P-VIM considers a variable to be important if its permutation 
has a stronger decrease in the accuracy of the model (mean square error 
in our case) than the permutation of an unimportant variable.

2.4. Estimating cycling moving speed for all road segments and 
comparison with real-world observation data

The speed estimation models were trained and tested on a subset of 
all Melbourne road segments with a reliable number of cycling records. 
However, for a city-wide agent-based simulation model, an associated 
speed factor was needed for every road segment of the entire network. 
Therefore, first the physical environment attributes were added to the 
entire road network following the steps described in Section 2.1. We 
then used the model with the highest predictive accuracy to assign a 

cycling speed to each road segment.
To validate the predicted speeds for the full network, we used data 

from automatic cycling speed sensors across Melbourne. This dataset, 
hereafter referred to as the sensor data, was downloaded from the Vic-
toria Open Data Platform for the period of March 2021.4 The sensor 
network consists of 35 counting stations, each counting station equipped 
with two sensors, one for each direction, resulting in a total of 70 
sensors.

The observed average weekday daily cycling speeds from these 
sensors varied across different locations. These variations reflect the 
diversity of cycling conditions in Melbourne, influenced by factors such 
as infrastructure quality, traffic volumes, and terrain.

Fig. 5. Attributes added to the selected road segments (base map from OpenStreetMap).

4 https://discover.data.vic.gov.au/dataset/bicycle-volume-and-speed
retrieved May 2021
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To analyse the accuracy of speed prediction, for each sensor i, the 
percentage of speed error denoted as δspeed,i was calculated based on the 
predicted speed, v̂, and the average speed observed during the week, 
vsensor,i , from sensor data as follows: 

δspeed, i =
v̂ − vsensor, i

vsensor, i
× 100 (1) 

2.5. Using a simulation model for scenario analyses on improved cycling 
speed during the AM peak

The Activity-based and agent-based Transport model of Melbourne 
(AToM) developed by Jafari et al. (2024b) was used and extended to 
incorporate estimated cycling speeds in a cycling traffic simulation 
model. AToM uses the Multi-Agent Transport Simulation (MATSim) as 
its core traffic simulator and is calibrated to simulate a typical weekday 
day of the transport system of Melbourne for a 10 % population sample. 
The travel demand for the model was created using the activity-based 
model developed by Both et al. (2021).

We replaced the road network of the AToM model with the road 
network model with the predicted cycling speed described from the most 
accurate speed estimation model between RF and LR. All modes except 
cycling were set to teleport, i.e., travelling in a straight line from the 
origin to the destination with constant speed and no interaction with the 
road network or other travellers, with a distance multiplier to bring the 
simulated distance closer to the actual network distance. These multi-
pliers (Table 1) were estimated using data from the 2014–16 Victorian 
Integrated Survey for Travel and Activity (VISTA),5 based on the trav-
ellers’ recorded trip duration and distance. VISTA is a household travel 
survey conducted by the Victorian Department of Transport and 

Planning, in which participants are asked to provide details of their trips 
and activities on the survey day. These details include the origins and 
destinations of their trips, main modes of travel, trip purposes, and de-
parture and arrival times.

The cycling utility function in AToM (Jafari et al., 2024b) was set to 
use the adjusted cycling travel time based on estimated speeds. 
Furthermore, a margin utility of the bicycle infrastructure was also 
added based on the parameters and equations proposed by Ziemke et al. 
(2018). For all other coefficients of the model same values as the base-
line AToM was used.

The agent-based simulation model was used to examine the potential 
impact of predict the impact of improving traffic signals to facilitate 
cycling speed during AM peak for corridors that feed into the Melbourne 
CBD. This scenario represents a simplistic approach to model a green 
wave intervention for cyclists. Six main corridors within a 5 km radius of 
Melbourne CBD were identified as candidates to test this intervention 
(Fig. 7). These corridors were selected in consultation with active 
transport planners from the Victorian Department of Transport and 
Planning, as well as local government transport planners. The selection 
was based on a number of reasons. First, the chosen corridors are known 
to have high cycling traffic, making them significant for commuting 
cyclists. Enhancements in these areas could benefit a large number of 
users. Also these corridors are key routes that connect the inner suburbs 
to the CBD, aligning with the monocentric urban structure of Melbourne 
where a significant proportion of work trips are directed towards the 
CBD. And lastly, the traffic signal setup along these corridors were 
among the potential candidates that a green wave signalling might be 
implemented for them in future.

To create the simulation scenario, all junctions within the relevant 
corridors were set to be similar to an un-signalised junction for the AM 
peak period for cyclists. The cycling speed was then predicted for these 
corridors using the best performing speed estimation model, and the 
outcome network was used to test the intervention scenario with the 
agent-based model. During the simulation, re-routing was the only 
strategy enabled for the agents. We ran the simulation mode for 200 
iterations for baseline and intervention scenarios to allow all agents to 
find their best route.

3. Results

The first statistical model that we used to predict the speed of cycling 
based on road attributes was the least squares multiple linear regression 
model. As shown in Table 2, most predictor variables were found to be 

Fig. 6. Random Forest model tuning graph for identifying optimum mtry and min_n.

Table 1 
Speed constant and Euclidean distance multiplier for the simulation teleporta-
tion travel modes.

Mode Speed constant (m/s) Distance multiplier

Car 7.37 1.30
Public transport 5.44 1.46
Walk 1.34 1.28

5 https://www.vic.gov.au/data-and-publications retrieved May 2021
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statistically significant in the LR model (p < 0.001), with the exception 
of Industrial and Other Zones, and Dedicated and Separated Lanes. For 
bikeway type, cycling on a mixed traffic road showed to be negatively 
correlated with cycling speed compared to a simple bike lane (p<0.001). 
Interestingly, both going uphill and downhill were found to be nega-
tively correlated with cycling speed. Another notable factor was the 
negative correlation of cycling speed on a road approaching a signalised 
junction when compared to unsignalised roads. Both within intersection 
and within roundabout were found to be associated with higher speeds 
compared with mid-block road segments, which could be due to cyclists 
accelerating to exit a junction more quickly. The overall model fit was 
R2 = 0.3154 with RMSE of 4.69.

Fig. 8 shows the results for P-VIM for the predictors of cycling speed 
based on the tuned RF model. As illustrated in this figure, signal type, 
distance to CBD, and slope were the three main predictors of cycling 
speed in Melbourne, followed by road length, zone type, speed limit, 
number of lanes, bikeway type, and junction type.

Both LR and RF models were used to predict the test dataset to 
evaluate their predictive accuracy. The prediction graphs in Fig. 9 show 
that although the prediction values in both models deviated from the 
actual values, the RF model (Fig. 9b) demonstrates a better fit to the 
prediction line compared with the LR model (Fig. 9a). The RF model 
exhibited better prediction accuracy with RMSE = 4.109 compared with 
RMSE = 4.690 for the LR model. However, both models outperformed 
the average constant speed of 15 km/h across all the road segments 
commonly used in simulation models (RMSE = 9.908), as well as the 
typical assumed cycling free-flow speed of 20 km/h (RMSE = 6.412). 
Therefore, the RF model was used to predict cycling speed for all road 
segments across the study area, to be used as input for the agent-based 
simulation model.

Fig. 10a illustrates the percentage error, δspeed, for the predicted 
cycling speed from the full network based on the trained RF model 
versus the observed speed from sensor data at each location of the sensor 
device. For 40 % of the sensors (28 out of 70), the error percentage was 
less than 15 %, while three sensors had an error percentage greater than 
66 %, mainly in the middle regions of Melbourne. The spread of errors 

for different types of bikeways is illustrated in Fig. 10b, indicating that 
the main deviations between the prediction and the actual values are for 
shared paths, where both pedestrians and cyclists are allowed.

The intervention scenario examined using the simulation model was 
the implementation of a cycling green wave for each of the corridors 
shown in Fig. 7. Table 3 shows the moving travel time and the number of 
cyclists using each corridor before and after the implementation of the 
intervention scenario. Eliminating the delay caused by traffic signals for 
cyclists travelling towards Melbourne CBD on the main corridors 
resulted in an average 6.2 % reduction in cycling moving travel time 
along these corridors, that is excluding the time stopping behind the 
traffic signal, and a 4.1 % increase in the number of cyclists using them. 
This increase is due to the re-routing of existing cyclists who adjust their 
routes to take advantage of the improved travel times, not due to an 
overall increase in cycling mode share.

Among the selected corridors, the sixth corridor had the highest 
decrease in moving travel time (-9.5 %), while the first corridor had the 
highest increase in cyclist numbers as a result of the intervention 
(11.1 %). It should be noted that the results in Table 3 only illustrate the 
impact of the intervention on cycling moving travel time, time spent 
stopping at traffic signals is not included in the simulation outputs. 
Therefore, the total reduction in travel time and the potential for 
attracting more cyclists could be even higher if the impact of traffic 
signals on stationary components of a trip were also included.

4. Discussion and conclusion

By comparing the LR and RF models in this paper for predicting 
cycling speed based on Strava Metro data, we found that the RF 
regression model showed superior accuracy compared with the LR 
model. This aligns with the findings of Couronne et al. (2018), who 
compared the predictive accuracy of RF and LR on 243 real datasets. 
They found that RF performed better in approximately 69 % of the 
datasets tested. However, both models can provide valuable insights 
that are discussed below.

The results of the LR model indicated that longer roads (i.e., fewer 

Fig. 7. Selected intervention corridors and bikeway types in Melbourne – Inner SA4 and surrounding (base map from OpenStreetMap).
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junctions) and approaching an unsignalised junctions rather than sign-
alised junctions result in faster cycling speeds or, in other words, less 
delay. This confirms the findings of previous studies on the relationship 
between cycling speed and bikeways, such as Clarry et al. (2019). The 

RF model, however, does not provide the direction and expected change 
in speed per unit change of the predictors, which are common outputs of 
an LR model. However, the variable importance analysis in Fig. 8 indi-
cated that the most significant road attribute associated with cycling 
speed was whether the road ends at a signal-controlled junction or not, 
indicating the importance of a proper signal control strategy to prioritise 
cyclists. Distance to the CBD was the second most important variable for 
the model. It represents the accessibility and density of destinations in 
Melbourne, as the inner-city areas and middle suburbs have greater 
amenities and typically feature more destinations and higher housing 
density (Giles-Corti et al., 2022). Furthermore, the results of the LR 
model demonstrated a positive correlation between the distance from 
the CBD variable and speed, which means that roads located further 
away from Melbourne CBD have faster speeds.

Slope was the third most important factor in the RF model for pre-
dicting cycling speed. This is consistent with several other studies that 
found slope to be an important factor (Romanillos and Gutiérrez, 2020), 
worthy of inclusion in cycling simulations (Ziemke et al., 2018). How-
ever, the LR model shows that both uphill and downhill paths are 
associated with lower cycling speeds. This could be due to cyclists 
braking more often when going downhill to maintain safe speeds. It may 
also be the case that simply dividing the slope into uphill and downhill 
measures is insufficient, and smaller slope intervals, like those consid-
ered by Flugel et al. (2019), are needed for the LR model. This is not an 
issue for the RF model, as it follows a hierarchical classification process 
and divides variables where the differences are most meaningful.

The RF model predicted cycling speed for all bicycle-accessible road 
segments in Melbourne. The resulting road network served as input for 
our city-scale agent-based simulation model, extending the bicycle 
simulation component of the baseline model proposed in Jafari et al. 
(2024b). Furthermore, our approach for adding heterogeneous speeds to 
agent-based models extends the work of Ziemke et al. (2018) by incor-
porating new factors, such as traffic signals, junction type, road length, 
and zone type.

The before-and-after comparison of removing the impact of traffic 
signals on cycling speed for six strategic corridors feeding into Mel-
bourne CBD illustrated the potential time savings that could be achieved 
by implementing the intervention. However, the results showed that the 
intervention had varying effects across different corridors. For example, 
the first corridor saw the highest increase in cycling volume due to the 
intervention, whereas the highest reduction in travel time was found in 
corridor six. This indicates that the best corridor for implementing the 
green wave signal timing depends on whether the goal is to decrease 
travel time for current users or to encourage those using neighbouring 
roads to use the desired corridor.

Three north-to-south corridors (corridors two to four) were exam-
ined, and the before-and-after comparison illustrated that although the 
green wave intervention resulted in travel time reductions in all three 
corridors, cycling volume only increased in one of them. This indicates 
that when evaluating the success of a series of signal optimisation in-
terventions, it is important to consider the potential impact of competing 
corridors that are viable alternatives for a large group of cyclists, such as 
those travelling from the northern suburbs to the CBD. However, even if 
the cycling volume did not increase in some corridors, the reduction in 
travel time provides direct benefits to the existing cyclists using those 
routes. These benefits include shorter commute times, reduced delays at 
intersections, and an overall more efficient and pleasant cycling expe-
rience. Improving travel times can enhance cyclist satisfaction and may 
contribute to sustained use of these corridors. It is also possible that the 
existing infrastructure in these corridors already does a fair job of 
facilitating safe cycling speeds, meaning that the corridors are already 
close to being good and adding a green wave intervention does not result 
in a significant improvement in attracting more cyclists. For example, 
Corridors 3 and 4 are favoured by current cyclists due to fewer barriers 
for cycling and better street design, and therefore, might be performing 
better than the models estimated. The travel time reductions in these 

Table 2 
Summary statistics of the linear regression model for association between road 
attributes and cycling speed.

Predictors Estimation std. 
error

Statistic p. 
value

CI

(Intercept) 21.09 0.34 61.89 <.001 20.42– 
21.76

Speed limit 0.10 0.02 4.49 <.001 0.06 – 0.15
Road segment 
length (m)

0.01 0.00 12.76 <.001 0.01 – 0.01

Distance to CBD 0.27 0.01 18.80 <.001 0.24 – 0.29
Uphill Slope (%) − 0.49 0.03 − 18.03 <.001 − 0.54 – 

− 0.44
Downhill Slope (%) − 0.09 0.03 − 3.52 <.001 − 0.15 – 

− 0.04
Car lanes (#) 0.35 0.08 4.41 <.001 0.19 – 0.50
Zone type (Ref=Residential)
Activity Centre − 1.76 0.50 − 3.52 <.001 − 2.74 – 

− 0.78
CBD − 1.86 0.25 − 7.42 <.001 − 2.35 – 

− 1.37
Commercial − 1.16 0.28 − 4.12 <.001 − 1.71 – 

− 0.61
Industrial − 0.63 0.55 − 1.15 0.249 − 1.71 – 

0.45
Mixed − 0.71 0.38 − 1.86 0.063 − 1.46 – 

0.04
Other 0.44 0.32 1.38 0.166 − 0.18 – 

1.07
Park and Recreation 1.09 0.22 4.98 <.001 0.66 – 1.53
Road 0.40 0.17 2.35 0.018 0.07 – 0.73
Logistics − 2.92 0.41 − 7.17 <.001 − 3.72 – 

− 2.12
Bikeway type (Ref=Simple lane)
Dedicated path − 0.40 0.42 − 0.96 0.339 − 1.22 – 

0.42
Mixed traffic − 0.73 0.13 − 5.52 <.001 − 0.98 – 

− 0.47
Separated lane 0.80 0.57 1.40 0.163 − 0.32 – 

1.92
Shared path − 0.60 0.26 − 2.28 0.023 − 1.11 – 

− 0.08
Junction (Ref=Mid-block)
Within intersection 1.38 0.17 8.12 <.001 1.05 – 1.71
Within roundabout 0.77 0.38 2.05 0.041 0.03 – 1.51
Signal (Ref=Not approaching a signal)
Approaching a 
signal

− 7.19 0.19 − 37.05 <.001 − 7.57 – 
− 6.81

N = 7, 547
R2/R2 adjusted = 0.3154/0.3134

Fig. 8. Variable importance (P-VIM) plot based on the trained Random For-
est model.
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corridors, even without an immediate increase in cycling volume, 
highlight the value of such interventions in enhancing the quality of 
cycling for current users.

The results do not suggest that traffic signals and junctions should be 
avoided when designing a bicycle-friendly neighbourhood. More junc-
tions result in better network connectivity, leading to shorter travel 
distances (Titze et al., 2010), which favours using bicycles as a mode of 
transport. The quandary of uninterrupted roads to reduce cycling delay 
versus more junctions for better connectivity to reduce distance, and 

more signalised junctions for better control of traffic flow and safety, 
could perhaps best be analysed based on the purpose of the road used by 
cyclists. For example, it is reasonable to lean towards a green wave 
intervention for corridors where most cyclists use these routes to travel 
to Melbourne’s CBD. In this case, the focus is on improving cyclist flow 
and reducing travel time delays. However, where local accessibility to 
destinations is a priority for cyclists, connectivity and safety are more 
pressing issues. This aligns with the Movement and Place framework 
recently adopted by the Victorian Government (Department of Trans-
port, 2019), which classifies streets based on their level of locality and 
function into different categories, from Connectors (roads with high 
movement significance and low place significance) to City Places (roads 
and streets with high demand for pedestrian activities and lower vehicle 
movement) to City Hubs (dense and vibrant places that also have a high 
demand for movement). Following this framework, an intervention to 
minimise cycling delays could be a desirable approach for Connector 
roads, while for City Places, higher connectivity might be of greater 
importance. More research is needed to examine the interdependencies 
and implications of each approach for different situations and road 
types, such as the different categories of the Movement and Place 
framework.

Moreover, it is important to recognise that travel time is not the sole 

Fig. 9. Prediction plots for the (a) linear regression model and (b) random forest model based on the test data set.

Fig. 10. Cycling speed error comparison between simulation results and sensor data based on (a) sensor locations, and (b) bikeway type (base map from 
OpenStreetMap).

Table 3 
Average AM peak moving travel time of cyclists using the corridors and number 
of cyclists on the selected corridors before and after the intervention.

Corridor Travel time Bicycle traffic volume

Before After Change (%) Before After Change (%)
1 18.0 16.7 − 7.4 292 325 11.1
2 13.6 12.6 − 6.7 105 99 − 5.5
3 21.6 21.0 − 2.7 321 326 1.6
4 20.4 19.7 − 3.1 192 191 − 0.4
5 22.9 21.2 − 7.5 114 125 9.6
6 19.8 17.9 − 9.5 124 128 3.3
Average 19.4 18.2 − 6.2 191.2 199 4.1

A. Jafari et al.                                                                                                                                                                                                                                   Journal of Cycling and Micromobility Research 3 (2025) 100049 

9 



factor influencing cyclists’ route choices. Studies have shown that cy-
clists are often willing to accept longer travel times to avoid uncom-
fortable roads, preferring routes that lead through more attractive areas 
such as parks or quieter streets, which may also feature fewer traffic 
lights (Broach et al., 2012). These preferences highlight the significance 
of route attractiveness, safety, and comfort in addition to travel time. 
Therefore, interventions focused solely on reducing travel time, such as 
optimising traffic signals, may not be sufficient to significantly increase 
cycling volumes if they do not also address these other important 
factors.

Furthermore, our simulation model indicates that improvements in 
travel time can lead to a redistribution of existing cyclists within the 
network, with more cyclists choosing the improved corridors. However, 
the model does not account for potential mode shifts from car or public 
transport to cycling. Assessing the impact of reduced bicycle travel time 
on encouraging non-cyclists to switch modes is an important area for 
future research. Incorporating mode choice into the simulation could 
provide insights into how infrastructure improvements might influence 
overall cycling participation.

This study does not account for individual cyclist characteristics and 
attributes that could be important correlates of cycling speed. The 
absence of these factors in our models likely contributes to the relatively 
high prediction errors we observed. These attributes include the cyclist’s 
level of physical fitness, experience and confidence, bicycle type (e.g., 
fixed-gear bike, road bike, or e-bike), and whether the person is wearing 
business attire or not. Furthermore, the use of Strava data may introduce 
a bias towards more competitive or active cyclists, potentially over-
estimating the average cycling speeds of the general population (Boss 
et al., 2018). This bias could explain some of the deviations observed in 
our models, despite cross-validation with sensor data. Therefore, when 
adjusting the road network to attract new cyclists, it is important to 
consider the speed and needs of less experienced or casual cyclists, who 
may travel at lower speeds. Modelling these differences is challenging 
with the available data, but acknowledging this limitation is crucial for 
interpreting our findings and for future research efforts aimed at pro-
moting cycling among a broader demographic. Incorporating these at-
tributes into the simulation model is possible given that heterogeneous 
agents can be modelled in the agent-based model. However, there is a 
dearth of data at this level of detail, and primary data collection might 
be needed.

Additionally, emerging micromobility technologies, including e- 
bikes and e-scooters, which also make use of cycling routes and infra-
structure, and the impact of the built environment on their moving 
speed, were not considered in this study due to limitations in the Metro 
data shared with us. While the data provides counts of rides per road 
segment for bicycles and e-bikes separately, we were unable to differ-
entiate speeds between cyclists and e-bikes. However, the counts of e- 
bike rides were negligible compared to traditional bicycles, and there-
fore, we expect that they have had limited impact on the average speeds 
per road segment calculated in our study. E-bikes, with their electric 
assistance, can reach higher speeds and accelerate more quickly, 
creating different behaviour compared to regular bicycles. The inte-
gration of e-bikes into existing cycling infrastructure can impact overall 
flow and safety, and their increasing popularity necessitates a broader 
understanding of how they interact with conventional cyclists. Another 
interesting avenue for future research is to explore how to best optimize 
traffic signals to accommodate these different behaviours.

Data used in this study was for the period that the transport system in 
Melbourne was affected by the travel restrictions due to the COVID-19 
pandemic period. Although this likely led to fewer bicycle trips for 
travel to work and more for other purposes, given the focus of this 
research on built-environment attributes and their association with 
cycling speed, we expect this to have limited implications for the us-
ability of our findings.

Lastly, another limitation of our approach was that traffic signal 
timing for different phases, as well as time spent waiting at traffic 

signals, were not considered. Although it is possible to incorporate 
traffic signals into a MATSim model using the extension by Kuhnel et al. 
(2018), it requires details of the timing and locations of all signals, 
which could be difficult to obtain and process for city-scale models. We 
expect that incorporating traffic signal timing, whether exact or heu-
ristic, would show that building a green wave for cyclists has a more 
significant impact in terms of travel time savings and increased cyclist 
numbers.
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